Chap 3

Practical Session n°4: DIFFRACTION

1 - EQUIPMENT

A laser source, a screen, and a slide containing a series of 6 slits of different widths are available:

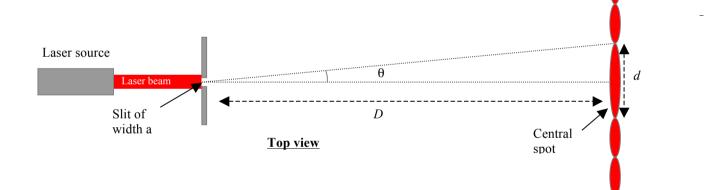
a = width of each slit (in mm)	0.07	0.04	0.05	0.10	0.12	0.28
--------------------------------	------	------	------	------	------	------

<u>Caution</u>: Take care when using the laser beam. Mind yours eyes!

A computer with the OpenOffice software can enable you to plot a graph, to make its model and to display the equation of this model.

2- OBJECTIVE

We aim at investigating the phenomenon of light diffraction and determining the wavelength of a laser beam.


The idea is to use the set up described below to show that θ is proportional to $\frac{1}{a}$ and then to deduce that the proportionality constant is equal to λ . This relation can be written as follow:

$$\theta = b \times \frac{1}{a}$$
 where θ : angle (expressed in radians) between the centre of the central spot and the centre of the first dark region (see diagram below)

b: proportionality constant (It is the slope of the curve $\theta = f(\frac{1}{\alpha})$ and is equal to λ .)

a: width of the slit

 λ : wavelength of the laser beam

<u>Remarks</u>: **\blacksquare** For small angles, we can assume that $\theta \approx \tan(\theta)$ if θ is expressed in radians.

■ tan() can be obtained by calculating the ratio opposite side over adjacent side.

The distance D between the slit and the screen should remain constant. You can set it at 2.0 meters for instance.

3- THE WORK TO BE DONE

3.1- Analysing the problem and finding an experimental procedure

With the available equipment, propose an experimental procedure to achieve the objective previously described. <u>Remark</u>: You must explain how to use the equipment, the software, and how to perform your measurements and calculations. <u>Call your teacher for checking or in case of any difficulty</u>.

3.2- Carrying out the experiment

Carry out your procedure.

Call your teacher to present your experimental results or in case of any difficulty.

3.3- Communicating on you work and your results

Express your result under the following form: $b = b_{mean} \pm \Delta b$

Where b_{mean} is the mean value of the slope b taking into account the results of all the groups of the class.

 $\Delta b\;$ is the uncertainty on b_{mean} (see the help card: How to express a result)

Compare this value to the wavelength of the laser given by your teacher. Conclude.

<u>Help card</u>: How to express a result for a series of independent measurements

The **final result** is not only a single numerical value. We have to define a **range of values** within which the **true value** has a high probability to be found. Therefore, we need to give a **measurement uncertainty** to estimate the width of this interval.

Expression of the result $b = b_{mean} \pm \Delta b$ where b_{mean} is the mean value (= average value)	Syntax of the OpenOffice spreadsheet Mean value: =MOYENNE() Standard deviation: =ECARTYPE() Servers rest: =BACDEC)		
and $\Delta \mathbf{b}$ is the uncertainty on this average value	Square root: =RACINE()		
$\Delta \mathbf{b}$ will be rounded to the higher value with only one significant figure. \mathbf{b}_{mean} will be rounded by retaining as last significant figure the digit that is at the same position as the one of $\Delta \mathbf{b}$.	See the help card to know how to use statistical functions. Remark: For a casio calculator, standard		
For example:	deviation is denoted $x\sigma n-1$		
If $v_{mean} = 238.53 \text{ m.s}^{-1}$ and $\Delta v = 3.4 \text{ m.s}^{-1}$			
We should write $\mathbf{v} = 239 \pm 4 \text{ m.s}^{-1}$	Significant figures In a number, every digit is significant except the zeros which are placed before the first non-nil digit. Examples		
The measurement uncertainty is defined by the relation where σ_{n-1} is the standard deviation (SD) of the $\Delta b = 2 \times \frac{\sigma_{n-1}}{\sqrt{n}}$			
measurements series and n the number of measurements	□ 5.3 2 significant figures		
	5.30 3 significant figures		
Method	5300 4 significant figures		
In the spreadsheet, calculate b_{mean} , σ_{n-1} (SD) and Δb	0.053 2 significant figures		