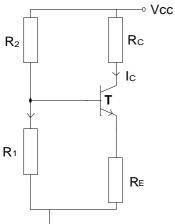
CORRIGÉ DU BTS 2005 (EXTRAIT)

1.1. Les condensateurs et le quartz qui sont des isolants en continu disparaissent du schéma.



1.2. La loi des mailles permet d'écrire : $V_{CC} = V_{CE} + (R_E + R_C).I_C$

$$\Rightarrow I_{\text{C}} = \frac{V_{\text{CC}} - V_{\text{CE}}}{R_{\text{E}} + R_{\text{C}}} = 0,909 \text{mA}$$

1.3.
$$V_{R1} = V_{BE} + R_E \cdot I_C = 2,60V = R_1 \cdot I_{R1}$$
 avec $I_{R1} = 10.I_B = I_C/10 \Rightarrow R_1 = 28,6 \text{ k}\Omega$

1.4. Donc
$$I_{R2}=11.I_B$$
 et $V_{R2}=V_{CC}-V_{R1}\approx 6,40V=R_2.I_{R2} \implies R_2=64~k\Omega$

2.1. L'impédance du quartz est constituée de deux branches en parallèle, elle est nulle lorsque l'impédance de l'une des branches s'annule soit :

$$L\omega - 1/(C\omega) = 0$$
 donc $\omega_S = \frac{1}{\sqrt{LC}}$

2.2.L'admittance a pour expression :

$$\underline{Y} = jC_0\omega + \frac{1}{j\left(L\omega - \frac{1}{C\omega}\right)} \quad \text{elle s'annule si } -C_0\omega \cdot \left(L\omega - \frac{1}{C\omega}\right) + 1 = 0$$

c'est à dire :
$$-C_0L\omega^2 + \frac{C_0}{C} + 1 = 0 \implies \omega_P^2 = \frac{\frac{C_0}{C} + 1}{LC_0} = \frac{C + C_0}{LCC_0}$$

$$\omega_{P} = \frac{1}{\sqrt{\frac{LCC_{0}}{C + C_{0}}}} = \omega_{S} \sqrt{1 + \frac{C}{C_{0}}}$$

2.3. $f_S = 12,301 \text{ MHz}$ $f_P = 12,331 \text{ MHz}$

2.4.1.
$$\underline{Z} = \frac{-j}{C_0 2\pi f} \frac{1 - f^2/f_S^2}{1 - f^2/f_P^2} = jX$$
 \Rightarrow $X = \frac{-1}{C_0 2\pi f} \frac{1 - f^2/f_S^2}{1 - f^2/f_P^2}$

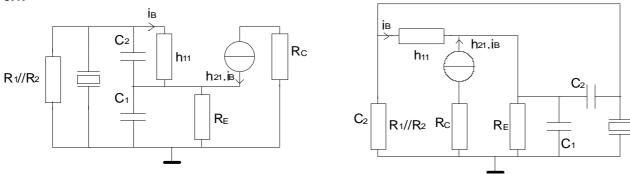
2.4.2. Pour $f < f_s$ le quartz est capacitif (X < 0)

Pour $f_s < f < f_p$ le quartz est inductif (X > 0)

Pour $f > f_P$ le quartz est capacitif (X < 0)

Serge Monnin Page 1 sur 2

3.1.



Donc $R_P = R_1 // R_2$ $X_1 = -1/(C_1\omega)$ $X_2 = -1/(C_2\omega)$ et X défini à la question 2.4.1.

3.2.
$$\underline{T}_B = \frac{jX}{jX_2 + jX} = \frac{X}{X_2 + X}$$
 réelle car X et X_2 sont réelles.

3.3.
$$\underline{Y}_{E} = \frac{1}{jX_{1}} + \frac{1}{j(X_{2} + X)} = -j\frac{X_{1} + X_{2} + X}{X_{1} \cdot (X_{2} + X)}$$

3.4.1.
$$\underline{T}_{BO} = \frac{\underline{V}_{S}}{V} \frac{\underline{V}}{V_{F}} = T_{B}.T_{A}$$

Lorsqu'on boucle le système, \underline{T}_{BO} = 1 réel positif, or \underline{T}_{A} comporte un élément imaginaire : \underline{Y}_{E} .

3.4.2. Pour que la condition soit satisfaite, cet élément doit donc être nul.

3.4.3.
$$X_1 + X_2 + X = 0$$

- **3.4.4.** X_1 et X_2 étant négatifs, X doit être positif : le quartz doit donc avoir un comportement inductif. Il oscillera donc à une fréquence comprise entre f_S et f_P .
- **3.4.5.** On voit que X(f) est positive entre 12300 et 12330 Hz, c'est donc entre ces deux fréquences que le quartz pourra osciller.
- **3.5.** Y_E s'annule à f = 12306,9 Hz qui sera donc la fréquence d'oscillations du montage.

Serge Monnin Page 2 sur 2