Programme de colles de Chimie n°8 Du 10 au 14 novembre 2025

Application du premier principe	
Etat standard. Capacité thermique	
standard à pression constante.	
Enthalpie standard de réaction.	Déterminer l'enthalpie standard de réaction à l'aide de tables de données
Enthalpie standard de changement	thermodynamiques et de la loi de Hess.
d'état. Etat standard de référence	
d'un élément, enthalpie standard de	
formation. Loi de Hess.	
Effets thermiques pour une	
transformation isobare:	
- transfert thermique causé par la transformation chimique en	Déterminer le transfert thermique entre le système en transformation physico- chimique et le milieu extérieur.
réacteur isobare isotherme	Evaluer la température atteinte par un système siège d'une transformation
(relation $\Delta H = Q_p = \xi \Delta_r H^{\circ}$);	physico-chimique supposée isobare et réalisée dans un réacteur adiabatique.
- transformation exothermique ou	
endothermique.	
Mélanges	
Potentiel chimique d'un constituant	Citer l'expression (admise) du potentiel chimique d'un constituant en fonction
dans un mélange ; enthalpie libre	de son activité chimique.
d'un système chimique.	Exprimer l'activité pour un gaz parfait pur, un gaz parfait d'un mélange, une
	phase condensée pure, un soluté d'une solution idéale, le solvant.
	Exprimer l'enthalpie libre d'un système en fonction des potentiels chimiques
Application du second principe	
Enthalpie libre de réaction.	Définir la constante thermodynamique d'équilibre à partir de l'enthalpie libre
Enthalpie libre standard de	standard de réaction. Loi d'action des masses.
réaction.	Prévoir le sens de réaction à P et T fixées d'un système physico-chimique dans
Relation entre $\Delta_r G$, $\Delta_r G^{\circ}$ et Q_r .	un état donné à l'aide de la constante d'équilibre K° et du quotient de réaction
	Q _r (l'affinité chimique n'est pas au pgm).
	Enoncer et exploiter la relation de Van't Hoff. Déterminer la valeur de la
	constante d'équilibre thermodynamique à une température quelconque dans le
	cadre de l'approximation d'Ellingham. Déterminer la valeur d'une constante
	d'équilibre thermodynamique d'une réaction par combinaison de constantes
Etat final d'un système : équilibre	d'équilibre d'autres réactions.
chimique ou transformation totale	Déterminer la composition chimique du système dans l'état final, en distinguant
	les cas d'équilibre chimique et de transformation totale, pour une transformation
	chimique modélisée par une réaction chimique unique.

<u>Révisions de première année</u>: (révisions personnelles)

Notions et contenus	Capacités exigibles
Cinétique en réacteur fermé de composition uniforme	Relier la vitesse de réaction, dans le cas où elle est définie, à la vitesse de
Vitesses de consommation d'un	consommation d'un réactif ou de formation d'un produit.
réactif et de formation d'un produit.	Etablir une loi de vitesse à partir du suivi temporel d'une grandeur physique.
Vitesse de réaction pour une transformation modélisée par une réaction chimique unique supposée	
sans accumulation d'intermédiaires.	Exprimer la loi de vitesse si la réaction chimique admet un ordre et déterminer la
Lois de vitesse : réactions avec ordre	valeur de la constante cinétique à une température donnée.
simple (0, 1, 2), ordre global, ordre apparent.	Déterminer la vitesse de réaction à différentes dates en utilisant une méthode numérique ou graphique.
Temps de demi-vie d'un réactif, temps de demi-réaction.	Déterminer un ordre de réaction à l'aide de la méthode différentielle ou à l'aide des temps de demi-réaction.
1	Confirmer la valeur d'un ordre par la méthode intégrale, en se limitant strictement
	à une décomposition d'ordre 0, 1 ou 2 d'un unique réactif, ou se ramenant à un tel
	cas par dégénérescence de l'ordre ou conditions initiales stœchiométriques.
	Etablir une loi de vitesse à partir du suivi temporel d'une grandeur
	physique.
Loi d'Arrhenius ; énergie	Déterminer la valeur de l'énergie d'activation d'une réaction chimique à partir de
d'activation.	valeurs de la constante cinétique à différentes températures.