
L V H  Semaine 14 : du 5 au 9 janvier 2026  Spé PSI 

Programme de colles de Physique 
 

Compétences exigibles : 
 

Actions de contact sur un fluide en écoulement   

• Établir l’expression de la force surfacique de viscosité dans le cas d’un écoulement plan d’un fluide newtonien 
(Couette plan, Poiseuille plan). 

• Citer la condition d’adhérence à l’interface fluide-solide, ou fluide-fluide. 

• Exploiter la forme du profil du champ des vitesses pour ces écoulements plans (en négligeant la pesanteur pour 
l’écoulement de Poiseuille plan). 

• Exprimer la dimension du coefficient de viscosité dynamique. 

• Citer l’ordre de grandeur de la viscosité de l’eau (à température ambiante). 

 
Ecoulement homogène et incompressible dans une conduite cylindrique  

• Vitesse débitante : la relier au débit volumique. 

• Ecoulements laminaires et turbulents : décrire ces 2 régimes. 

• Décrire qualitativement les 2 modes de transfert de quantité de mouvement : convection et diffusion. 

• Interpréter le nombre de Reynolds comme le rapport d’un temps caractéristique de diffusion de quantité de 
mouvement sur un temps caractéristique de convection, ou comme un rapport de flux surfaciques. 

• Evaluer le nombre de Reynolds et l’utiliser pour caractériser le régime d’écoulement. 

• Établir la forme du profil du champ des vitesses pour un écoulement de Poiseuille (Re faible) dans une conduite 
cylindrique circulaire, en négligeant la pesanteur, et en raisonnant sur une portion de fluide de longueur ℓ et de 

rayon 𝑟. 

• Dans le cas d’un écoulement à bas nombre de Reynolds, établir la loi de Hagen-Poiseuille et en déduire la 
résistance hydraulique. Analogies électriques. 

• Chute de pression dans une conduite horizontale : exploiter le graphe (diagramme de Moody) de la chute de 
pression en fonction du nombre de Reynolds, pour un régime d'écoulement quelconque. 

• Exploiter un paramétrage adimensionné permettant de transposer des résultats expérimentaux ou numériques 
sur des systèmes similaires réalisés à des échelles différentes. 

 
Ecoulement externe homogène et incompressible autour d’un obstacle 

• Décrire qualitativement la notion de couche limite. 

• Force de traînée subie par une sphère solide en mouvement rectiligne uniforme. Coefficient de traînée Cx ; 
graphe de Cx en fonction du nombre de Reynolds : associer une gamme de nombre de Reynolds à un modèle 
de traînée linéaire ou un modèle quadratique. 

• Force de traînée et de portance d’une aile d’avion à haut Reynolds : définir et orienter les forces de portance et 
de traînée ; exploiter les graphes de Cx et Cz en fonction de l’angle d’incidence.  
 

Ondes sonores dans les fluides (Cours uniquement cette semaine)  

• Classer les ondes sonores par domaines fréquentiels. 

• Enoncer les hypothèses de l’approximation acoustique. 

• Ecrire les équations locales linéarisées (dans le cadre de l’approximation acoustique) : conservation de la masse, 
équation de la dynamique, équation thermodynamique. 

• Etablir l’équation de propagation de la surpression formulée avec l’opérateur laplacien. 

• Exprimer la célérité des ondes sonores dans les fluides, puis dans le cas des gaz parfaits, l’exprimer en fonction 
de la température. Citer les ordres de grandeur de la célérité pour l’air et pour l’eau. 

• Utiliser les expressions admises du vecteur densité de courant énergétique et de la densité volumique d’énergie 
associés à la propagation de l’onde. 

• Définir l’intensité sonore en W/m² et le niveau d’intensité sonore en dB. Citer quelques ordres de grandeur de 
niveau d’intensité sonore (minimum d’audition, seuil de douleur, conversation). 

• Ondes planes progressives harmoniques : décrire le caractère longitudinal de l’onde sonore ; établir et utiliser 
l’impédance acoustique, définie comme le rapport de la surpression sur la vitesse ou comme le rapport de la 
surpression sur le débit volumique. Utiliser le principe de superposition d’ondes planes progressives 
harmoniques pour obtenir une onde plane progressive non harmonique. 

• Discuter de la validité du modèle de l’onde plane en relation avec le phénomène de diffraction. 

• Justifier les hypothèses de l’approximation acoustique par des ordres de grandeur. 

• Ondes sonores sphériques : commenter l’expression de la surpression 𝑝(𝑟, 𝑡) proportionnelle à 
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générée par une sphère pulsante : atténuation géométrique, structure locale d’onde plane. 


