LVH Semaine 14 : du 5 au 9 janvier 2026 Spé PSI

Programme de colles de Physique

Compétences exigibles :

Actions de contact sur un fluide en écoulement

Etablir 'expression de la force surfacique de viscosité dans le cas d’'un écoulement plan d’un fluide newtonien
(Couette plan, Poiseuille plan).

Citer la condition d’adhérence a I'interface fluide-solide, ou fluide-fluide.

Exploiter la forme du profil du champ des vitesses pour ces écoulements plans (en négligeant la pesanteur pour
I’écoulement de Poiseuille plan).

Exprimer la dimension du coefficient de viscosité dynamique.

Citer I'ordre de grandeur de la viscosité de I'eau (a température ambiante).

Ecoulement homogéne et incompressible dans une conduite cylindrique

Vitesse débitante : la relier au débit volumique.

Ecoulements laminaires et turbulents : décrire ces 2 régimes.

Décrire qualitativement les 2 modes de transfert de quantité de mouvement : convection et diffusion.
Interpréter le nombre de Reynolds comme le rapport d’'un temps caractéristique de diffusion de quantité de
mouvement sur un temps caractéristique de convection, ou comme un rapport de flux surfaciques.

Evaluer le nombre de Reynolds et I'utiliser pour caractériser le régime d’écoulement.

Etablir la forme du profil du champ des vitesses pour un écoulement de Poiseuille (Re faible) dans une conduite
cylindrique circulaire, en négligeant la pesanteur, et en raisonnant sur une portion de fluide de longueur ¢ et de
rayon r.

Dans le cas d’'un écoulement a bas nombre de Reynolds, établir la loi de Hagen-Poiseuille et en déduire la
résistance hydraulique. Analogies électriques.

Chute de pression dans une conduite horizontale : exploiter le graphe (diagramme de Moody) de la chute de
pression en fonction du nombre de Reynolds, pour un régime d'écoulement quelconque.

Exploiter un paramétrage adimensionné permettant de transposer des résultats expérimentaux ou numériques
sur des systémes similaires réalisés a des échelles différentes.

Ecoulement externe homogéne et incompressible autour d’un obstacle

Décrire qualitativement la notion de couche limite.

Force de trainée subie par une sphere solide en mouvement rectiligne uniforme. Coefficient de trainée Cx ;
graphe de Cx en fonction du nombre de Reynolds : associer une gamme de nombre de Reynolds a un modéle
de trainée linéaire ou un modéle quadratique.

Force de trainée et de portance d’'une aile d’avion a haut Reynolds : définir et orienter les forces de portance et
de trainée ; exploiter les graphes de Cx et Cz en fonction de I'angle d’incidence.

Ondes sonores dans les fluides (Cours uniquement cette semaine)

Classer les ondes sonores par domaines fréquentiels.

Enoncer les hypothéses de I'approximation acoustique.

Ecrire les équations locales linéarisées (dans le cadre de I'approximation acoustique) : conservation de la masse,
équation de la dynamique, équation thermodynamique.

Etablir 'équation de propagation de la surpression formulée avec I'opérateur laplacien.

Exprimer la célérité des ondes sonores dans les fluides, puis dans le cas des gaz parfaits, I'exprimer en fonction
de la température. Citer les ordres de grandeur de la célérité pour I'air et pour I'eau.

Utiliser les expressions admises du vecteur densité de courant énergétique et de la densité volumique d’énergie
associés a la propagation de 'onde.

Définir I'intensité sonore en W/m? et le niveau d’intensité sonore en dB. Citer quelques ordres de grandeur de
niveau d’intensité sonore (minimum d’audition, seuil de douleur, conversation).

Ondes planes progressives harmoniques : décrire le caractére longitudinal de I'onde sonore ; établir et utiliser
I'impédance acoustique, définie comme le rapport de la surpression sur la vitesse ou comme le rapport de la
surpression sur le débit volumique. Utiliser le principe de superposition d’'ondes planes progressives
harmoniques pour obtenir une onde plane progressive non harmonique.

Discuter de la validité du modele de I'onde plane en relation avec le phénoméne de diffraction.

Justifier les hypotheses de I'approximation acoustique par des ordres de grandeur.

Ondes sonores sphériques : commenter I'expression de la surpression p(r, t) proportionnelle a %cos (w (t — E))

générée par une sphére pulsante : atténuation géométrique, structure locale d’'onde plane.



