Keysight U1731C, U1732C et U1733C Mesureur LCR portable

Guide d'utilisation

Avis: Ce document contient des références à Agilent. Veuillez noter que le groupe de test et mesure d'Agilent est devenu Keysight Technologies. Pour plus d'informations, visitez **www.keysight.com.**

Avertissements

© Keysight Technologies 2011 – 2014

Conformément aux lois internationales relatives à la propriété intellectuelle, toute reproduction, tout stockage électronique et toute traduction de ce manuel, totaux ou partiels, sous quelque forme et Keysight Technologies par quelque moyen que ce soit, sont interdits sauf consentement écrit préalable de la société.

Référence du manuel

U1731-90080

Edition

Édition 6, Novembre 2014

Keysight Technologies 1400 Fountaingrove Parkway Santa Rosa, CA 95403

Garantie

Les informations contenues dans ce document sont fournies « en l'état » et pourront faire l'objet de modifications sans préavis dans les éditions ultérieures. Dans les limites de la législation en vigueur, exclut en outre toute Keysight garantie, expresse ou implicite, concernant ce manuel et les informations qu'il contient, y compris, mais non exclusivement, les garanties de gualité marchande et d'adéquation à un usage particulier. Keysight ne saurait en aucun cas être tenu pour responsable des erreurs ou des dommages incidents ou consécutifs, liés à la fourniture, à l'utilisation ou à l'exactitude de ce document ou aux performances de tout produit Keysight auquel il se rapporte. Si Keysight et l'utilisateur ont passé un contrat écrit distinct, stipulant, pour le produit couvert par ce document, des conditions de garantie qui entrent en conflit avec les présentes conditions, les conditions de garantie du contrat distinct remplacent les conditions énoncées dans le présent document.

Licences technologiques

Le matériel et/ou logiciel décrits dans le présent document sont fournis sous licence. Leur utilisation ou leur reproduction sont régies par ce contrat.

Restrictions applicables en matière de garantie

Limitations des droits du Gouvernement des Etats-Unis. Les droits s'appliquant aux logiciels et aux informations techniques concédées au gouvernement fédéral incluent seulement les droits concédés habituellement aux clients utilisateurs. Keysight concède la licence commerciale habituelle sur les logiciels et les informations techniques suivant les directives FAR 12.211 (informations techniques) et 12.212 (logiciel informatique) et, pour le ministère de la Défense, selon les directives DFARS 252.227-7015 (informations techniques – articles commerciaux) et DFARS 227.7202-3 (droits s'appliquant aux logiciels informatiques commerciaux ou à la documentation des logiciels informatiques commerciaux).

Avertissements de sécurité

ATTENTION

La mention **ATTENTION** signale un danger pour le matériel. Si la manœuvre ou la procédure correspondante n'est pas exécutée correctement, il peut y avoir un risque d'endommagement de l'appareil ou de perte de données importantes. En présence de la mention **ATTENTION**, il convient de s'interrompre tant que les conditions indiquées n'ont pas été parfaitement comprises et satisfaites.

AVERTISSEMENT

La mention AVERTISSEMENT signale un danger pour la sécurité de l'opérateur. Elle attire l'attention sur une procédure ou une pratique qui, si elle n'est pas respectée ou correctement réalisée, peut se traduire par des accidents graves, voire mortels. En présence de la mention AVERTISSEMENT, il convient de s'interrompre tant que les conditions indiquées n'ont pas été parfaitement comprises et satisfaites.

Symboles de sécurité

Les symboles suivants portés sur l'instrument et contenus dans sa documentation indiquent les précautions à prendre afin de garantir son utilisation en toute sécurité.

	Courant continu (CC)	\bigcirc	Arrêt (alimentation)
\sim	Courant alternatif (CA)		Marche (alimentation)
\sim	Courant alternatif et continu		Attention, danger d'électrocution
3~	Courant alternatif triphasé	\wedge	Attention, risque de danger (reportez-vous à ce manuel pour des informations détaillées sur les avertissements et les mises en garde)
<u>+</u>	Borne de prise de terre		Attention, surface chaude
H	Terminal conducteur de protection		Bouton-poussoir bistable en position normale
<i>.</i>	Borne du cadre ou du châssis		Bouton-poussoir bistable en position enfoncée
Å	Equipotentialité		Équipement protégé par une double isolation ou une isolation renforcée

Consignes de sécurité

Lisez les informations ci-dessous avant d'utiliser cet instrument.

Les consignes de sécurité présentées dans cette section doivent être appliquées dans toutes les phases de l'utilisation, de l'entretien et de la réparation de cet équipement. Le non-respect de ces précautions ou des avertissements spécifiques mentionnés dans ce manuel constitue une violation des normes de sécurité établies lors de la conception, de la fabrication et de l'usage normal de l'instrument. Keysight Technologies ne saurait être tenu pour responsable du non-respect de ces consignes.

ATTENTION

- Débranchez l'alimentation et déchargez les condensateurs haute tension avant les tests.
- Lorsque vous testez des composants, mettez les circuits hors tension avant de brancher les cordons test.
- Cet instrument est conçu pour être utilisé en intérieur à une altitude inférieure à 2000 m.
- Utilisez uniquement le type de piles spécifié (voir « Caractéristiques du produit » à la page 74). L'appareil est alimenté par une pile de 9 V. Vérifiez l'orientation des bornes de la pile avant de l'installer dans l'appareil.
- L'appareil peut aussi fonctionner avec un adaptateur CA/CC 12 V. Si vous utilisez un adaptateur, vérifiez qu'il est conforme aux normes de sécurité IEC.

AVERTISSEMENT

- Pour une sécurité optimale, utilisez uniquement ce mesureur conformément aux instructions figurant dans ce manuel.
- N'utilisez pas le multimètre s'il paraît endommagé. Vérifiez l'état du boîtier avant d'utiliser le mesureur. Recherchez des fissures ou des trous. Faites particulièrement attention à l'isolement autour des connecteurs.
- Vérifiez que les cordons de test sont intacts ; aucune partie métallique ne doit être exposée. Vérifiez la continuité des cordons de test. Remplacez les cordons endommagés avant d'utiliser le mesureur.
- N'utilisez pas le mesureur à proximité de vapeurs, de gaz explosifs ou dans des environnements humides.
- N'utilisez jamais le mesureur dans un environnement humide ou si sa surface est mouillée. Si le mesureur est mouillé, confiez l'opération de séchage à une personne qualifiée.
- Lors de l'entretien du mesureur, utilisez exclusivement les pièces de rechange indiquées.
- Si vous utilisez des sondes, gardez les doigts derrière les protège-doigts des sondes.
- Connectez le commun du cordon de test avant le cordon de test sous tension. Pour déconnecter les cordons de test, commencez par le cordon sous tension.
- Débranchez les cordons de test du mesureur avant d'ouvrir le capot du compartiment de la pile.
- N'utilisez pas le mesureur lorsque le capot du compartiment de la pile ou une partie du capot est retiré ou mal fixé.
- Pour éviter les relevés erronés, susceptibles d'entraîner des risques d'électrocution ou des dommages corporels, remplacez la pile dès que l'indicateur de faible niveau de charge apparaît et clignote.

Conditions d'environnement

Cet appareil est conçu pour être utilisé dans des locaux fermés où la condensation est faible. Le tableau ci-dessous indique les conditions ambiantes générales requises pour cet instrument.

Conditions d'environnement	Exigences
Température de fonctionnement	Précision optimale entre –10 °C et 55 °C
Humidité en fonctionnement	Précision optimale jusqu'à 80 % d'humidité relative (HR)
Température de stockage	–20 °C à 70 °C
Stockage dans un environnement humide	Entre 0 % et 80 % HR (sans condensation)
Altitude	Jusqu'à 2 000 mètres
Degré de pollution	Degré 2 de pollution

NOTE

Le U1731C/U1732C/U1733C Mesureur LCR portable est conforme aux normes de sécurité et aux normes CME suivantes :

- CEI61010-1:2001/EN61010-1:2001 (deuxième édition)
- CEI 61326-1:2005/EN 61326-1:2006
- · Canada : ICES/NMB-001 : édition 4 juin 2006
- Australie/Nouvelle Zélande : AS/NZS CISPR11:2004

Marquages réglementaires

	Le marquage CE est une marque déposée de la Communauté Européenne. Ce marquage CE indique que le produit est conforme à toutes les directives légales européennes le concernant.	C N10149	Le marquage C-tick est une marque déposée de l'agence australienne de gestion du spectre (Spectrum Management Agency). Elle indique la conformité aux règles de l'Australian EMC Framework selon les termes de la loi Radio Communications Act de 1992.
ICES/NMB-001	ICES/NMB-001 indique que cet appareil ISM est conforme à la norme canadienne ICES-001. Cet appareil ISM est conforme à la norme NMB-001 du Canada.		Cet instrument est conforme aux exigences de marquage de la directive relative aux DEEE (2002/96/CE). L'étiquette apposée sur le produit indique que vous ne devez pas le jeter avec les ordures ménagères.
40)	Ce symbole indique la période pendant laquelle aucune détérioration ou fuite de substances toxiques ou dangereuses n'est prévue dans le cadre d'une utilisation normale. La durée de vie prévue du produit est de 40 ans.		

Directive européenne 2002/96/CE relative aux déchets d'équipements électriques et électroniques (DEEE)

Cet instrument est conforme aux exigences de marquage de la directive relative aux DEEE (2002/96/CE). L'étiquette apposée sur le produit indique que vous ne devez pas le jeter avec les ordures ménagères.

Catégorie du produit :

en référence aux types d'équipement définis à l'Annexe I de la directive DEEE, cet instrument est classé comme « instrument de surveillance et de contrôle ».

L'étiquette apposée sur l'appareil est présentée ci-dessous :

Ne le jetez pas avec les ordures ménagères.

Si vous souhaitez retourner votre instrument, contactez le Centre de services Keysight le plus proche ou consultez le site Web suivant :

www.keysight.com/environment/product

pour de plus amples informations.

Déclaration de conformité (DDC)

La déclaration de conformité (DDC) de cet appareil est disponible sur le site Web d'Keysight. Vous pouvez rechercher la DDC par modèle de produit ou par description à l'adresse indiquée ci-dessous.

http://www.keysight.com/go/conformity

NOTE

Si vous ne trouvez pas la DDC correspondante, contactez votre représentant local Keysight.

CETTE PAGE EST BLANCHE INTENTIONNELLEMENT.

Table des matières

1 Présentation 1

À propos de ce manuel 2 2 Plan de la documentation Notes de sécurité 2 Préparation de votre mesureur LCR 3 Vérification de la livraison 3 Installer la pile 3 Mettez le mesureur LCR en marche 5 6 Extinction automatique (APO) 7 Activation du rétroéclairage Sélection de la plage 8 Réglage du socle inclinable 9 Connexion du câble IR-USB 10 Options de mise sous tension 11 Votre mesureur LCR en bref 12 Dimensions 12 Vue d'ensemble 14 Clavier 16 Écran 19 Bornes d'entrée 23 Nettoyage de votre mesureur LCR 24 Fonctions et caractéristiques 25

Mesures 26 Fonction Ai d'auto-identification 26 Mesure de l'inductance (L) 29 Mesure de la capacité (C) 31 Mesure de la résistance (R) 33 Mesure de l'impédance (Z) 35

2

Mesure du facteur de perte/facteur de qualité/angle de phase $(D/Q/\theta)$ 37 37 Modification de la fréquence de test Sélection du mode de circuit parallèle/série (P/S) 37 Définition du seuil de tolérance de standard (Tol%) 38 Activation des mesures ESR 39 Activation des mesures DCR 39 40 Caractéristiques supplémentaires Blocage de l'écran (Hold) 40 Activation du mode d'enregistrement statique (Rec) 40 Définition de la comparaison de limite maxi/mini (Limite) 42 Mesures relatives (Null) 45 Exécution de l'étalonnage en circuit ouvert et en court-circuit 46

3 Options de configuration **49**

50 Utilisation du menu de configuration Modification de valeurs numériques 51 Récapitulatif du menu de configuration 52 Options du menu de configuration 54 Modification du comportement au démarrage 54 Modification de la condition d'angle de phase de la fonction Ai 61 Modification de la catégorie et du jeu au démarrage 63 Modification des valeurs de limite utilisateur haute/basse 64 66 Modification du débit de données (en bauds) Modification du contrôle de parité 67 Modification des bits de données 68 Modification de la fréquence du signal sonore 69 Verrouillage des touches 70 Modification des délais de temporisation du rétroéclairage et de l'extinction automatique 71 72 Réinitialisation des éléments de configuration

4 Caractéristiques et spécifications 73

Caractéristiques du produit 74 Spécifications prévisionnelles 75 **Spécifications électriques** 76 Spécifications Impédance/Résistance/DCR 76 Spécifications de capacité 77 78 Spécifications d'inductance Angle de phase des spécifications d'impédance 79 Spécifications du facteur de dissipation/qualité 80 Spécifications du signal de test 81 Impédance source de la mesure d'impédance/résistance 82 Impédance source de la mesure de capacité 83 Impédance source de la mesure d'inductance 84 Spécifications relatives aux pinces SMD 85 Caractéristiques électriques 86

CETTE PAGE EST BLANCHE INTENTIONNELLEMENT.

Liste des figures

Figure 1-1 Figure 1-2	Installation des piles 4 Bouton de mise en marche 5
Figure 1-3	Réglage du socle inclinable et connexion du câble IR 9
Figure 1-4	Logiciel Keysight GUI Data Logger 10
Figure 1-5	Largeur 12
Figure 1-6	Hauteur et profondeur 13
Figure 1-7	Face avant 14
Figure 1-8	Panneau arrière 15
Figure 2-1	Utilisation de la fonction Ai. 26
Figure 2-2	Mesure d'inductance avec facteur Q 29
Figure 2-3	Mesure de l'inductance 30
Figure 2-4	Mesure de capacité avec facteur D 31
Figure 2-5	Mesure de capacité 32
Figure 2-6	Mesure de résistance 33
Figure 2-7	Mesure de la résistance 34
Figure 2-8	Mesure de l'impédance avec thêta 35
Figure 2-9	Mesure de l'impédance 36
Figure 2-10	Composant au-dessus de la tolérance définie 38
Figure 2-11	Mesure ESR avec thêta 39
Figure 2-12	Mesure DCR 39
Figure 2-13	Utilisation de la fonction Hold 40
Figure 2-14	Utilisation de la fonction Rec 41
Figure 2-15	Utilisation de la fonction Limit 43
Figure 2-16	Valeurs maxi et mini 44
Figure 2-17	Indications nGo et Go 44
Figure 2-18	Utilisation de la fonction Null 45
Figure 2-19	Utilisation de la fonction Cal 47
Figure 2-20	Invites d'étalonnage ouvert et court-circuit 47
Figure 3-1	Modification du type de mesure au démarrage 55
Figure 3-2	Modification de la fréquence de test au démarrage 56
Figure 3-3	Modification du paramètre secondaire et du mode de
	mesure des mesures d'inductance (L) au
	démarrage. 57

Figure 3-4	Modification du paramètre secondaire et du mode de mesure des mesures de capacité (C) au démarrage 58
Figure 3-5	Modification du paramètre secondaire et du mode de mesure des mesures de résistance (R) au démarrage 59
Figure 3-6	Modification de l'étalonnage en circuit ouvert et en court-circuit au démarrage 60
Figure 3-7	Modification de la condition d'angle de phase de la fonction Ai 62
Figure 3-8	Modification de la catégorie et du jeu au démarrage 63
Figure 3-9	Modification des valeurs de limite utilisateur haute/basse 65
Figure 3-10	Modification du débit de données (en bauds) 66
Figure 3-11	Modification du contrôle de parite 67
Figure 3-12	Modification des bits de données 68
Figure 3-13	Modification de la fréquence du signal sonore 69
Figure 3-14	Verrouillage des touches 70
Figure 3-15	Modification des délais de temporisation du
	rétroéclairage et de l'extinction automatique 71
Figure 3-16	Réinitialisation des éléments de configuration 72
Figure 4-1	Pince U1782B SMD 85

Liste des tableaux

Tableau 1-1	Indicateur de niveau des piles 5
Tableau 1-2	Options de mise sous tension 11
Tableau 1-3	Composants de la face avant 14
Tableau 1-4	Composants de la face arrière 15
Tableau 1-5	Fonctions du clavier 16
Tableau 1-6	Symboles généraux 19
Tableau 1-7	Affichage des unités de mesure 22
Tableau 1-8	Bornes d'entrée/branchements 23
Tableau 2-1	Règles d'auto-identification de l'angle de phase 27
Tableau 2-2	Règles d'auto-identification série/parallèle pour la
	mesure de résistance 27
Tableau 2-3	Règles d'auto-identification série/parallèle pour la
	mesure de capacité 28
Tableau 2-4	Règles d'auto-identification série/parallèle pour la
	mesure d'inductance 28
Tableau 2-5	Fréquences de test disponibles 37
Tableau 2-6	Valeurs maxi et mini par défaut 42
Tableau 3-1	Fonctions des touches du menu de configuration
	(Setup) 50
Tableau 3-2	Description des options du menu de configuration 52
Tableau 3-3	Règles d'auto-identification de l'angle de phase 61
Tableau 3-4	Valeurs par défaut de limite utilisateur
	haute/basse 64
Tableau 4-1	Spécifications Impédance/Résistance/DCR 76
Tableau 4-2	Spécifications de capacité 77
Tableau 4-3	Spécifications d'inductance 78
Tableau 4-4	Angle de phase des spécifications d'impédance 79
Tableau 4-5	Spécifications du facteur de dissipation/qualité 80
Tableau 4-6	Spécifications du signal de test 81
Tableau 4-7	Impédance source de la mesure
	d'impédance/résistance 82
Tableau 4-8	Impédance source de la mesure de capacité 83
Tableau 4-9	Impédance source de la mesure d'inductance 84
Tableau 4-10	Caractéristiques électriques de la pince U1782B
	SMD 86

CETTE PAGE EST BLANCHE INTENTIONNELLEMENT.

À propos de ce manuel 2 Plan de la documentation 2 Notes de sécurité 2 Préparation de votre mesureur LCR 3 Vérification de la livraison 3 Installer la pile 3 Mettez le mesureur LCR en marche 5 Extinction automatique (APO) 6 Activation du rétroéclairage 7 Sélection de la plage 8 Réglage du socle inclinable 9 Connexion du câble IR-USB 10 Options de mise sous tension 11 Votre mesureur LCR en bref 12 Dimensions 12 Vue d'ensemble 14 Clavier 16 Écran 19 Bornes d'entrée 23 Nettoyage de votre mesureur LCR 24

Ce chapitre vous explique comment configurer votre mesureur LCR pour sa première utilisation. Vous y trouverez aussi une présentation des fonctions du mesureur LCR.

À propos de ce manuel

À propos de ce manuel

Les descriptions et instructions contenues dans le présent manuel s'appliquent aux instruments Keysight U1731C, U1732C et U1733C Mesureur LCR portable (ci-après le « mesureur »).

Le modèle U1733C apparaît dans chaque illustration.

Plan de la documentation

Les manuels et logiciels suivants sont disponibles pour votre multimètre. Pour obtenir la dernière version en date, rendez-vous sur notre site Web à l'adresse suivante : http://www.keysight.com/find/hhTechLib.

Vérifiez le numéro de révision du manuel indiqué sur la première page de chaque guide.

- Guide d'utilisation. Il s'agit du présent manuel.
- Guide de mise en route. Copie imprimée, pour une utilisation en extérieur ; ce guide est inclus dans la livraison.
- Guide de maintenance. Téléchargement gratuit sur le site Web d'Keysight.
- logiciel Keysight GUI Data Logger, Guide de mise en route et aide. Téléchargement gratuit sur le site Web d'Keysight.

Notes de sécurité

Les notes de sécurité sont utilisées dans tous le guide (voir des exemples de mise en forme dans la section « Avertissements de sécurité »). Familiarisez-vous avec chacune des notes et leur signification avant d'utiliser votre mesureur.

Vous trouverez, à la section « Consignes de sécurité », des notes de sécurité plus pertinentes concernant l'utilisation de cet instrument.

En présence d'un avertissement de sécurité, il convient de s'interrompre tant que les conditions indiquées n'ont pas été parfaitement comprises et satisfaites.

1

Préparation de votre mesureur LCR

Vérification de la livraison

À la réception de votre mesureur LCR, vérifiez la livraison conformément à la procédure décrite ci-après.

- 1 Vérifiez que l'emballage d'expédition n'est pas endommagé. L'emballage d'expédition est endommagé si, par exemple, il présente des traces de choc ou s'il est déchiré, ou si le matériau de bourrage présente des traces de tension ou de compression inhabituelles. Conservez le matériau d'emballage au cas où vous devriez renvoyer le mesureur LCR.
- **2** Retirez le contenu de l'emballage d'expédition et vérifiez que els accessoires standard et que les options que vous avez commandées se trouvent bien dans la boîte, conformément à la liste des éléments standard qui se trouve dans la copie papier du Guide de mise en route *U1731C/U1732C/U1733C*.
- **3** Si vous rencontrez un problème ou avez la moindre question, reportez-vous aux numéros de contact Keysight au dos de ce manuel.

Installer la pile

Votre mesureur LCR est alimenté par une seule pile alcaline 9 V (livrée avec le produit). Lorsque vous recevez votre mesureur LCR, la pile alcaline 9 V n'est pas installée.

Procédez comme suit pour l'installer.

ATTENTION

Avant de procéder à l'installation de la pile, débranchez tous les câbles connectés aux bornes et assurez-vous que le mesureur LCR est hors tension. Utilisez uniquement le type de pile indiqué à la section « Caractéristiques du produit » à la page 74.

Préparation de votre mesureur LCR

- **1 Ouvrez le compartiment des piles.** Levez le socle inclinable. A l'aide d'un tournevis cruciforme, retirez la vis et enlevez le capot, comme indiqué dans la Figure 1-1.
- **2** Insérez la pile. Respectez la polarité de la pile. La polarité de la pile est indiquée à l'intérieur du compartiment.
- **3** Fermez le compartiment des piles. Replacez le couvercle dans sa position d'origine et serrez la vis.

Figure 1-1 Installation des piles

L'indicateur de niveau des piles situé dans le coin inférieur droit de l'écran indique l'état relatif de la pile. Le Tableau 1-1 décrit les différents niveaux de charge représentés par l'indicateur.

AVERTISSEMENT

Pour éviter les relevés erronés, susceptibles d'entraîner des risques d'électrocution ou des dommages corporels, remplacez la pile dès que l'indicateur de faible niveau de charge apparaît. Ne déchargez pas les piles en les court-circuitant ni en inversant la polarité.

Préparation de votre mesureur LCR

ATTENTION

Pour éviter qu'une fuite des piles n'endommage l'instrument :

- · Retirez toujours immédiatement les piles vides.
- Retirez toujours la pile et conservez-la séparément si le multimètre LCR n'est pas utilisé pendant une longue période.

Indication	Capacité des piles
	Pleine charge
	2/3 de capacité
	1/3 de capacité
(Clignotement régulier)	Presque vide (moins d'un jour) ^[1]

 Tableau 1-1
 Indicateur de niveau des piles

 Remplacement de la pile conseillé. Utilisez uniquement le type de piles spécifié (voir page 74).

Mettez le mesureur LCR en marche

Pour mettre en marche votre mesureur LCR, appuyez une fois sur le bouton de mise en marche. Le mesureur LCR se met en marche en mode auto-identification (Ai) (voir page 26) lors de sa première mise sous tension.

Figure 1-2 Bouton de mise en marche

Préparation de votre mesureur LCR

Pour arrêter votre mesureur LCR, appuyez à nouveau sur le bouton de mise en marche.

Vous pouvez modifier le comportement au démarrage de votre mesureur LCR pour les cycles d'alimentation suivants. Reportez-vous à la « Modification du comportement au démarrage » à la page 54 pour plus d'informations sur la modification du paramètre de démarrage du mesureur.

Extinction automatique (AP0)

Votre mesureur LCR s'arrête automatiquement après 5 minutes (par défaut) si aucune touche n'est activée. À la suite d'une extinction automatique, le mesureur LCR se remet sous tension dès que vous appuyez sur une touche.

L'annonciateur APO s'affiche en bas à gauche de l'écran lorsque la fonction d'extinction automatique est activée.

NOTE

- Pour modifier le délai d'expiration ou désactiver complètement la fonction d'extinction automatique, reportez-vous à la section
 « Modification des délais de temporisation du rétroéclairage et de l'extinction automatique » à la page 71.
- Si vous utilisez un adaptateur externe, la fonction d'extinction automatique est désactivée.

Présentation Préparation de votre mesureur LCR

1

Activation du rétroéclairage

Si la visibilité de l'écran devient difficile dans des conditions de faible luminosité, appuyez sur me pendant au moins 1 seconde pour activer le rétroéclairage de l'écran LCD.

Pour préserver l'autonomie des piles, une temporisation réglable par l'utilisateur contrôle la durée de fonctionnement du rétroéclairage. Le délai de temporisation par défaut est de 30 secondes.

		 1.5
	<u> </u>	_

- Pour modifier le délai d'expiration ou désactiver complètement le rétroéclairage, reportez-vous à la section « Modification des délais de temporisation du rétroéclairage et de l'extinction automatique » à la page 71.
- Si vous utilisez un adaptateur externe, la fonction d'extinction automatique est désactivée.

Préparation de votre mesureur LCR

Sélection de la plage

La touche server de faire basculer le mesureur LCR entre le mode de sélection de plage automatique ou manuel. Elle permet également de parcourir les plages du mesureur LCR disponibles lorsque la sélection manuelle de plage est activée.

La sélection automatique de plage permet de sélectionner automatiquement la plage de détection appropriée et d'afficher automatiquement chaque mesure. Le réglage manuel de plage donne cependant de meilleures performances, car le mesureur LCR ne doit pas déterminer la plage à utiliser pour chaque mesure.

En mode de plage automatique, le mesureur LCR sélectionne la plage la plus basse pour afficher la plus haute précision (résolution) possible pour le signal d'entrée. Si la plage manuelle est déjà activée, maintenez la touche region enfoncée pendant plus d'une seconde pour passer en mode de sélection de plage automatique.

Si le mode de sélection de plage automatique est activé, appuyez sur passer en mode de sélection de plage manuel.

Chaque pression supplémentaire sur la touche **Finite** sélectionne la plage supérieure suivante, sauf s'il s'agit déjà de la plage la plus élevée, auquel cas le mesureur LCR revient à la plage la plus basse.

Présentation 1 Préparation de votre mesureur LCR

Réglage du socle inclinable

Pour régler l'inclinaison du mesureur LCR à 60° , tirez le socle inclinable au maximum vers l'extérieur.

Figure 1-3 Réglage du socle inclinable et connexion du câble IR

Préparation de votre mesureur LCR

Connexion du câble IR-USB

Vous pouvez utiliser la liaison de communication IR (port de communication IR, situé sur la face arrière) et le logiciel Keysight GUI Data Logger pour commander votre multimètre à distance, effectuer des opérations d'enregistrement de données et transférer le contenu de la mémoire de votre mesureur LCR vers un ordinateur.

Assurez-vous que le logo Keysight situé sur le câble IR-USB U5481A (acheté séparément) connecté au mesureur LCR est orienté vers le haut. Enfoncez fermement l'extrémité IR dans le port de communication IR du mesureur LCR jusqu'à ce qu'il soit bien en place (voir la Figure 1-3).

Pour plus d'informations sur la liaison de communication IR et le logiciel Keysight GUI Data Logger, consultez l'*Aide du logiciel Keysight GUI Data Logger et le Guide de mise en route.*

LCR Meter																_1
Communication		Time	Mode	Freq	Lo	La	Co	G	Ro	Ba	Z	DCR	ESR	9	DF	Theta
🖲 Manual 🌔 Auto	•	3/4/2011 3:50:33 PM	Ra	100.0						107.0 G				55.78 µ	99.00E+036	44.38
Port : COM13 💌		3/4/2011 3:50:34 PM	Rs	100.0		-	-		-	16.59 G				916.5 µ	99.00E+036	43.79
Baud Bate 9500 V		3/4/2011 3:50:34 PM	Ra	100.0						8.758 G				916.5 µ	99.00E+036	43.79
		3/4/2011 3:50:35 PM	Rs	100.0					÷	9.979 G				80.28 µ	99.00E+036	-2.847
Parity : None 💌		3/4/2011 3:50:35 PM	Rs	100.0			-		÷	19.94 G				365.3 µ	99.00E+036	-97.69
DataBts : 8 💌		3/4/2011 3:50:36 PM	Ra	100.0						13.55 G			1.00	398.0 µ	99.00E+036	21.39
Indate Port Connect		3/4/2011 3:50.36 PM	Ra	100.0	-				÷	29.34 G			-	229.7 µ	99.00E+036	17.09
		3/4/2011 3:50:37 PM	Rs	100.0	-				÷	8.009 G			-	1.007 m	993.0	44.88
Logging		3/4/2011 3:50:37 PM	Ra	100.0					e	9.306 G			÷	629.4 µ	99.00E+036	15.45
anne Made Attents Center and Rep		3/4/2011 3:50:38 PM	Rs	100.0	-				÷	19.90 G			-	629.4 µ	99.00E+036	93.91
Sugging mode Patomate Contribute - Stop		3/4/2011 3:50:38 PM	Ra	100.0		÷	-	-	÷	7.717 G			÷	201.2 µ	99.00E+036	-14.87
econd)		3/4/2011 3:50:39 PM	Ra	100.0				•	÷	6.840 G			÷	933.3 µ	99.00E+036	33.52
anning Count		3/4/2011 3:50:39 PM	Rs	100.0	-		-	-	-	7.646 G			•	817.7 µ	99.00E+036	31.90
logging count		3/4/2011 3:50:40 PM	Rø	100.0	•		-		÷	8.018 G			÷	216.6 µ	99.00E+036	4.012
Export Data Gear Table		3/4/2011 3:50:41 PM	Rs	100.0	-		-	•		6.741 G				757.8 µ	99.00E+036	-36.96
		3/4/2011 3:50:41 PM	Rs	100.0	-		-	-		11.91 G		•		914.1 µ	99.00E+036	69.67
Casha untino		3/4/2011 3:50:42 PM	Ra	100.0			÷		÷	10.85 G			1 C	138.9 µ	99.00E+036	-17.03
		3/4/2011 3:50:42 PM	Rs	100.0	-		-	-	-	33.92 G			•	10.78 µ	99.00E+036	-23.94
Primary R 💌 Serial 💌		3/4/2011 3:50:43 PM	Rs	100.0	-		-	-	-	7.512 G		•		449.4 µ	99.00E+036	13.96
Pages Vite V		3/4/2011 3:50:43 PM	Ra	100.0	•			•	÷	27.26 G				131.4 µ	99.00E+036	-45.67
		3/4/2011 3:50:44 PM	Rs	100.0	•			•	÷	9.759 G	•	-	-	1.068 m	936.3	66.81
Secondary Th																
Featuratory 100 Y																
er Connected																

Figure 1-4 Logiciel Keysight GUI Data Logger

Le logiciel Keysight GUI Data Logger et les documents qui l'accompagnent (*Guide de mise en route* et *Aide*) peuvent être téléchargés gratuitement à l'adresse suivante : http://www.keysight.com/find/hhTechLib.

Vous pouvez acheter le câble IR-USB U5481A chez votre distributeur Keysight le plus proche.

1

Options de mise sous tension

Certaines options ne peuvent être sélectionnées que lors de la mise sous tension du mesureur LCR. Ces options de mise sous tension sont répertoriées dans le tableau ci-dessous.

Pour sélectionner une option de démarrage, maintenez enfoncée la touche spécifiée dans Tableau 1-2 lors de la mise en marche du mesureur LCR (⁽⁾).

Touche	Description
Hold Rec	Teste l'écran. Tous les symboles s'affichent sur l'écran LCD. Appuyez sur une touche pour quitter ce mode.
Range > Auto	Simule le mode APO. Appuyez sur n'importe quelle touche pour remettre le mesureur LCR sous tension et rétablir un fonctionnement normal.
	Vérifie la version du microprogramme. La version du micrologiciel du mesureur LCR apparaît sur l'écran principal. Appuyez sur une touche pour quitter ce mode.
A Null Cal	Effectue l'étalonnage en circuit ouvert et en court-circuit sur toutes les fréquences et plages du mode utilisateur (<i>os-user</i>). ^[1]
ZLCR P⇔S	Ouvre le menu de configuration. Pour plus d'informations, consultez la section Chapitre 3, « Options de configuration », à partir de la page 49. Appuyez sur Exp pendant plus d'une seconde pour quitter ce mode.

Tableau 1-2 Options de mise sous tension

[1] L'étalonnage en circuit ouvert et en court-circuit prend environ 1 minute et demie.

Votre mesureur LCR en bref

Votre mesureur LCR en bref

Dimensions

Vue de l'avant

Figure 1-5 Largeur

Présentation 1 Votre mesureur LCR en bref

Vues arrière et latérale

Figure 1-6 Hauteur et profondeur

Votre mesureur LCR en bref

Vue d'ensemble

Face avant

Cette section décrit les composants de la face avant du mesureur LCR. Cliquez sur la page « En savoir plus » correspondant à un composant dans Tableau 1-3 pour obtenir un complément d'information à son sujet.

Figure 1-7 Face avant

Tableau 1-3	Composants de	la face avant
-------------	---------------	---------------

Légende	Description	En savoir plus :
1	Écran	page 19
2	Clavier	page 16
3	Bornes d'entrée et prises	page 23

Présentation 1 Votre mesureur LCR en bref

Panneau arrière

Cette section décrit les composants de la face arrière du mesureur LCR. Cliquez sur la page « En savoir plus » correspondant à un composant dans Tableau 1-4 pour obtenir un complément d'information à son sujet.

	Tableau 1-4	Composants	de la	face	arrière
--	-------------	------------	-------	------	---------

Légende	Description	En savoir plus :
1	Port de communication infrarouge (IR)	page 10
2	Socle inclinable	page 9
3	Couvercle du compartiment (levez le socle inclinable pour y accéder)	page 3
4	Prise d'entrée de l'adaptateur d'alimentation externe ^[1]	-

[1] La prise d'entrée pour adaptateur nécessite une tension d'entrée de +12 Vcc.

Votre mesureur LCR en bref

Clavier

La fonction de chaque touche est décrite ci-après. L'enfoncement d'une touche active une fonction, affiche un annonciateur et émet un signal sonore.

Les fonctions des différentes touches du clavier du U1731C/U1732C/U1733C (présenté dans la Figure 1-7) sont décrites dans le Tableau 1-5. Cliquez sur la page « En savoir plus » correspondant à un annonciateur dans Tableau 1-5 pour obtenir un complément d'information à son sujet.

Légende	Fonction lorsque la touche est enfoncée pendant :		
	Moins d'une seconde	Plus d'une seconde	plus :
	Met en marche ou arrête le mesureur LCR.	-	page 5
Ai A ESR	 Lance ou arrête le mode d'identification automatique. Appuyez à nouveau sur ^{At} quand l'annonciateur At est affiché pour quitter ce mode. 	 Active ou désactive le mode ESR (résistance-série équivalente). Appuyez sur ^{At} pendant plus d'une seconde pour quitter ce mode. Le mesureur LCR revient à la mesure de capacité par défaut. 	page 26
Hold Rec Save	 Maintient ou permet d'effacer le relevé à l'écran. Appuyez à nouveau sur mettre automatiquement le relevé à jour une fois qu'il est stable. Appuyez sur mettre pendant plus d'une seconde pour quitter ce mode. 	 Lance ou arrête le mode d'enregistrement statique. Appuyez à nouveau sur <i>meet</i> pour basculer entre les relevés maximal (Max), minimal (Min), moyen (Avg) et actuel (MaxMinAvg). Appuyez sur <i>meet</i> pendant plus d'une seconde pour quitter ce mode. 	page 40

Tableau 1-5 Fonctions du clavier
Présentation 1

Votre mesureur LCR en bref

Lágondo	Fonction lorsque la touche est enfoncée pendant :					
Leyenue	Moins d'une seconde	Plus d'une seconde	plus :			
DQ O Limit <	Permet d'alterner entre la mesure du facteur de dissipation (D), du facteur de qualité (Ω) et de l'angle de phase (θ)	 Active ou désactive le mode de comparaison de limite. Pendant que l'annonciateur <i>Limit</i> clignote, Appuyez sur en et en pour passer de la limite maxi (H) à la limite mini (L), puis utilisez les touches d' et en pour sélectionner le jeu de limites maxi/mini (1 à 16). Appuyez sur en pour lancer le tri des limites (avec le jeu de limites sélectionné) ou Si aucune activité n'est détectée au bout de 3 secondes, la comparaison des limites commence. Appuyez sur en pendant plus d'une seconde pour quitter ce mode. 	page 37 et page 42			
Freq. V DCR	 Permet de sélectionner une fréquence de test. Appuyez à nouveau sur region pour parcourir les fréquences de test (100 Hz à 100 kHz). 	 U1733C uniquement : Active ou désactive le mode DCR (résistance en courant continu). Appuyez sur revent pendant plus d'une seconde pour quitter ce mode. Le mesureur LCR revient à la mesure d'inductance par défaut. 	page 37			
Range > Auto	 Désactive la classification automatique et définit une classe manuelle. Appuyez à nouveau sur Rente plage de mesure disponible. 	Active la classification automatique.	page 8			
	Permet d'alterner entre la mesure d'impédance (Z), d'inductance (L), de capacité (C) et de résistance (R).	Permet d'alterner entre le mode de circuit parallèle et série.	page 27 à page 35 et page 37			
Tol%	 Définit le mode de tolérance. Connectez un composant compatible sur les bornes et prises d'entrées et appuyez sur remp pour définir la valeur présentée sur l'écran secondaire comme valeur de référence standard. Appuyez à nouveau sur remp pour parcourir les valeurs de tolérance (1 % à 20 %). 	 Allume le rétroéclairage pendant 15 secondes (par défaut) ou l'éteint. Pour modifier ce délai, reportez-vous à la section « Modification des délais de temporisation du rétroéclairage et de l'extinction automatique » à la page 71. 	page 38 et page 7			

Tableau 1-5 Fonctions du clavier (suite)

1 Présentation

Votre mesureur LCR en bref

Tableau 1-5 Fond	tions du	clavier	(suite)
------------------	----------	---------	---------

Légende	Fonction lorsque la touche est enfoncée pendant :					
	Moins d'une seconde	Plus d'une seconde	plus :			
A Null Cal	 Définit le mode null/relatif. La valeur affichée est enregistrée comme référence à soustraire des mesures suivantes. Appuyez de nouveau sur annuler ce mode. 	 Entre en mode d'étalonnage ouvert/court-circuit pour la classe et la fréquence de test sélectionnées. Suivez les invites à l'écran (connecteur ouvert ou court-circuit) et appuyez sur ancer le processus d'étalonnage. Le mesureur LCR revient à l'affichage normal une fois l'étalonnage terminé. 	page 45 et page 46			

Écran

La fonction à laquelle chaque annonciateur du mesureur LCR est associé est décrite dans cette section. Voir aussi « Unités de mesure » à la page 22 pour la liste des notations et des unités de mesure.

Symboles généraux de l'affichage

Les symboles généraux de l'affichage du mesureur LCR sont décrits dans le tableau suivant.

Les annonciateurs d'affichage du U1731C/U1732C/U1733C (présenté dans la Figure 1-7) sont décrits dans le Tableau 1-6. Cliquez sur la page « En savoir plus » correspondant à un composant dans Tableau 1-6 pour obtenir un complément d'information à son sujet.

Légende	Description	En savoir plus :
~PO	Commande à distance via indicateur PC	page 10
ESR	Indicateur de résistance de série équivalent	
DCR	Mesure de résistance par indicateur de courant continu	
OS-Factory	Mesureur LCR utilisant les paramètres d'étalonnage en circuit ouvert et en court-circuit d'usine	nogo 46
OS-User	Mesureur LCR utilisant les paramètres d'étalonnage en circuit ouvert et en court-circuit définis par l'utilisateur	– page 40
100Hz	La fréquence de mesure du signal de test est de 100 Hz.	
120Hz	La fréquence de mesure du signal de test est de 120 Hz.	
1 kHz	La fréquence de mesure du signal de test est de 1 Hz.	page 37
10kHz	La fréquence de mesure du signal de test est de 10 Hz.	_
100kHz	La fréquence de mesure du signal de test est de 100 Hz.	

Tableau 1-6 Symboles généraux

1 Présentation

Votre mesureur LCR en bref

Légende	Description	En savoir plus :
[ΤοΙ]	Indicateur de mode de tolérance pour tri L, C ou R	
1%	Tolérance définie à 1 % pour tri de la capacité	
5%	Tolérance définie à 5 % pour tri de la capacité	page 38
10%	Tolérance définie à 10 % pour tri de la capacité	
20%	Tolérance définie à 20 % pour tri de la capacité	
Hold	Indicateur de mode gel des données	page 40
• 1))	Signal sonore pour les modes tolérance et limite	page 69
D	Facteur de dissipation	
Q	Facteur de qualité	page 37
θ	Angle de phase de l'indicateur d'impédance	
-888	Affichage secondaire	-
o % kHz	Unités de mesure pour l'écran secondaire	page 22
Ζ	Indicateur de mesure d'impédance	page 35
L	Indicateur de mesure d'inductance	page 29
С	Indicateur de mesure de capacité	page 31
R	Indicateur de mesure de résistance	page 33

 Tableau 1-6
 Symboles généraux (suite)

Présentation 1 Votre mesureur LCR en bref

Légende	Description	En savoir plus :
MaxMinAvg	Valeur actuelle sur l'affichage principal	
Max	Valeur maximale sur l'affichage principal	
Min	Valeur minimale sur l'affichage principal	page 40
Avg	Valeur moyenne sur l'affichage principal	
Δ	Indicateur relatif (Null)	page 45
Auto	Indicateur de plage automatique	page 8
Limit	Indicateur de mode limite	
	Valeur hors limite maximale (HI)	page 42
•	Valeur hors limite minimale (LO)	
APO,	Indicateur de mise en veille automatique	page 6
-18888	Affichage principal	-
P项FH MkΩS	Unités de mesure pour l'écran principal	page 22
₽⊶ੑੑ <u>ੑ</u>	Mode parallèle	nogo 27
\$00000 LEO	Mode série	— page or
	Indicateur de capacité de batterie	page 5

 Tableau 1-6
 Symboles généraux (suite)

1 Présentation

Votre mesureur LCR en bref

Unités de mesure

Le Tableau 1-7 décrit les symboles et notations disponibles pour chaque fonction de mesure de votre mesureur LCR. Les unités présentées ci-dessous sont applicables aux mesures de l'écran principal de votre mesureur LCR.

Symbole/Notation	Descripti	Description				
М	Méga	1E+06 (1000000)				
k	kilo	1E+03 (1000)				
m	milli	1E–03 (0,001)				
μ	micro	1E–06 (0,000001)				
n	nano	1E–09 (0,00000001)				
р	pico	1E-12 (0.00000000001)				
0	Unité deç	Unité degré pour la mesure de l'angle de phase				
%	Unité pou	Unité pourcentage pour la mesure de tolérance				
μH, mH, H	Unités Henry pour la mesure de l'inductance					
pF, nF, μF, mF	Unités Farad pour la mesure de capacité					
Ω, kΩ, MΩ	Unités Ohm pour la mesure de la résistance et de l'impédance					
kHz, Hz	Unités Ho	ertz pour la mesure de fréquence				

Tableau 1-7 Affichage des unités de mesure

Bornes d'entrée

Les connexions de la borne et de la prise de votre mesureur LCR sont décrites dans le tableau suivant.

AVERTISSEMENT

Ne dépassez pas les limites autorisées : vous risqueriez d'endommager l'instrument. N'appliquez pas de tension aux bornes d'entrée. Déchargez le condensateur avant les tests.

Tableau 1-8 Bornes d'entrée/branchements

Borne d'entrée/ branchement	Description
+	Borne positive/branchement de composant
-	Borne négative/branchement de composant
GUARD	Borne de terre/branchement de composant

1 Présentation

Nettoyage de votre mesureur LCR

Nettoyage de votre mesureur LCR

AVERTISSEMENT

Pour éviter tout risque d'électrocution ou d'endommagement du mesureur LCR, assurez-vous que l'intérieur du boîtier est toujours sec.

La présence de poussière ou d'humidité au niveau des bornes peut perturber les mesures. Procédez comme suit pour nettoyer votre mesureur LCR.

- 1 Éteignez le mesureur LCR et déconnectez les cordons de test.
- **2** Retournez le mesureur LCR et secouez-le pour éliminer les éventuelles saletés accumulées dans les bornes.
- **3** Essuyez le boîtier avec un chiffon humide et un produit nettoyant doux. N'utilisez pas de produits abrasifs ni de solvants.
- **4** Essuyez les contacts de chaque borne avec un coton-tige propre trempé dans de l'alcool.

2 Fonctions et caractéristiques

Mesures 26 Fonction Ai d'auto-identification 26 Mesure de l'inductance (L) 29 Mesure de la capacité (C) 31 Mesure de la résistance (R) 33 Mesure de l'impédance (Z) 35 Mesure du facteur de perte/facteur de qualité/angle de phase (D/Q/θ) 37 Modification de la fréquence de test 37 Sélection du mode de circuit parallèle/série (P/S) 37 Définition du seuil de tolérance de standard (Tol%) 38 Activation des mesures ESR 39 Activation des mesures DCR 39 Caractéristiques supplémentaires 40 Blocage de l'écran (Hold) 40 Activation du mode d'enregistrement statique (Rec) 40 Définition de la comparaison de limite maxi/mini (Limite) 42 Mesures relatives (Null) 45 Exécution de l'étalonnage en circuit ouvert et en court-circuit 46

Ce chapitre décrit les fonctions et les caractéristiques du mesureur LCR.

2 Fonctions et caractéristiques Mesures

Mesures

Fonction Ai d'auto-identification

Appuyez sur 👫 pour identifier automatiquement la mesure adaptée à l'appareil testé (DUT).

Figure 2-1 Utilisation de la fonction Ai.

L'annonciateur 🗛 clignote lorsque le mesureur LCR identifie l'appareil testé et

- sélectionne une mesure adéquate pour l'écran principal (L, C ou R) et l'écran secondaire (D, Q, ou θ),
- sélectionne une plage appropriée, et
- sélectionne un mode de mesure approprié (série ou parallèle).

NOTE

La fonction *Ai* permet d'identifier automatiquement les mesures L, C et R selon l'angle de l'impédance détectée dans l'appareil testé. Reportez-vous à la Tableau 2-1 pour les règles de l'angle de phase.

La condition d'angle de phase par défaut est définie sur 10°. Vous pouvez modifier cet angle dans le menu configuration, de 5° à 45°. Pour plus d'informations, consultez la section « Modification de la condition d'angle de phase de la fonction Ai » à la page 61. Le mode de mesure (série ou parallèle) est automatiquement identifié dans la direction de la plage automatique.

Les Tableau 2-2, Tableau 2-3 et Tableau 2-4 dressent la liste des séries/parallèles utilisés.

Angle de phase ^[1]	Affichage principal	Affichage secondaire
$-\mathbf{Set} < \mathbf{\theta} < +\mathbf{Set}$	R	θ
$\theta \ge +$ Set	L	۵
$\theta \leq -$ Set	C	D

 Tableau 2-1
 Règles d'auto-identification de l'angle de phase

[1] Lorsque ±Set est l'angle de phase sélectionné.

Tableau 2-2 Règles d'auto-identification série/parallèle pour la mesure de résistance

Plage de résistance	Plage mini	Plage maxi
200 MΩ	Parallèle	Parallèle
20 MΩ	Parallèle	Parallèle
2000 kΩ	Parallèle	Parallèle
200 kΩ	Parallèle	Parallèle
20 kΩ	Parallèle	Série
2000 Ω	Parallèle	Série
200 Ω	Parallèle	Série
20 Ω	Série	Série
2 Ω	Série	Série

2 Fonctions et caractéristiques

Mesures

Diama	100 Hz		120 Hz		1 kHz		10 kHz		100 kHz	
Plage	Mini	Maxi								
20 mF	Série	Série	Série	Série	-	-	-	-	-	-
2000 μF	Série	Série	Série	Série	Série	Série	-	-	-	-
200 μF	Série	-	-							
20 μF	Série	Parallèle	Série	Parallèle	Série	Série	Série	Série	Série	Série
2000 nF	Série	Parallèle	Série	Parallèle	Série	Parallèle	Série	Série	Série	Série
200 nF	Série	Parallèle	Série	Parallèle	Série	Parallèle	Série	Parallèle	Série	Série
20 nF	Parallèle	Parallèle	Parallèle	Parallèle	Série	Parallèle	Série	Parallèle	Série	Parallèle
2000 pF	Parallèle	Parallèle	Parallèle	Parallèle	Parallèle	Parallèle	Série	Parallèle	Série	Parallèle
200 pF	-	-	-	-	Parallèle	Parallèle	Parallèle	Parallèle	Série	Parallèle
20 pF	-	-	-	-	-	-	Parallèle	Parallèle	Parallèle	Parallèle

 Tableau 2-3
 Règles d'auto-identification série/parallèle pour la mesure de capacité

Tableau 2-4 Règles d'auto-identification série/parallèle pour la mesure d'inductance

Plage	100 Hz		120 Hz		1 kHz		10 kHz		100 kHz	
	Mini	Maxi								
2000 H	Parallèle	Parallèle	Parallèle	Parallèle	Parallèle	Parallèle	-	-	-	-
200 H	Parallèle	-	-							
20 H	Parallèle	Série	Parallèle	Série	Parallèle	Parallèle	Parallèle	Parallèle	Parallèle	Parallèle
2000 mH	Parallèle	Série	Parallèle	Série	Parallèle	Série	Parallèle	Parallèle	Parallèle	Parallèle
200 mH	Parallèle	Série	Parallèle	Série	Parallèle	Série	Parallèle	Série	Parallèle	Parallèle
20 mH	Série	Série	Série	Série	Parallèle	Série	Parallèle	Série	Parallèle	Série
2000 μH	Série	Série	Série	Série	Série	Série	Parallèle	Série	Parallèle	Série
200 µH	-	-	-	-	Série	Série	Série	Série	Parallèle	Série
20 µH	-	-	-	-	-	-	Série	Série	Série	Série

Mesure de l'inductance (L)

Configurez votre mesureur LCR pour mesurer l'inductance comme décrit dans la Figure 2-3.

NOTE

Il est recommandé d'effectuer l'étalonnage en circuit ouvert et en court-circuit (voir page 46) avant les tests afin d'obtenir une précision optimale pour toutes les mesures d'inductance, de capacité et de résistance dans les plages hautes et basses.

- 1 Appuyez sur la touche (1) pour allumer le mesureur LCR.
- 2 Appuyez sur Free pour sélectionner une fréquence de test acceptable et
 - i appuyez sur 👫 pour activer la fonction d'identification automatique, ou
 - ii appuyez sur ELCR pour sélectionner la mesure d'inductance.

- **3** Branchez une bobine d'induction ou une pince de test dans l'appareil.
- Appuyez sur en pour modifier la mesure de l'affichage secondaire (D, Q ou θ).
- **5** Lisez les affichages.

2 Fonctions et caractéristiques Mesures

Figure 2-3 Mesure de l'inductance

Mesure de la capacité (C)

Configurez votre mesureur LCR pour mesurer la capacité comme décrit dans la Figure 2-5.

AVERTISSEMENT

Pour éviter les risques, déchargez le condensateur avant de le tester.

- 1 Appuyez sur la touche 🔘 pour allumer le mesureur LCR.
- 2 Appuyez sur Free pour sélectionner une fréquence de test acceptable et
 - i appuyez sur 🏝 pour activer la fonction d'identification automatique, ou
 - ii appuyez sur [PHS] pour sélectionner la mesure de capacité.

Figure 2-4 Mesure de capacité avec facteur D

- **3** Branchez un condensateur ou une pince de test dans l'appareil.
- Appuyez sur pour modifier la mesure de l'affichage secondaire (D, Q ou θ).
- **5** Lisez les affichages.

2 Fonctions et caractéristiques Mesures

Figure 2-5 Mesure de capacité

Mesure de la résistance (R)

Configurez votre mesureur LCR pour mesurer la résistance comme décrit dans la Figure 2-7.

ATTENTION

Pour ne pas endommager le mesureur LCR ou l'équipement contrôlé, débranchez l'alimentation du circuit et déchargez tous les condensateurs à haute tension avant de mesurer la résistance.

- **1** Appuyez sur la touche (1) pour allumer le mesureur LCR.
- 2 Appuyez sur Free, pour sélectionner une fréquence de test acceptable et
 - i appuyez sur 🏝 pour activer la fonction d'identification automatique, ou
 - ii appuyez sur $\frac{\mathbb{ZLCR}}{\mathbb{P} \mapsto \mathbb{S}}$ pour sélectionner la mesure de résistance.

Figure 2-6 Mesure de résistance

- 3 Connectez une résistance ou une pince de test à l'appareil.
- 4 Lisez l'affichage.

2 Fonctions et caractéristiques Mesures

Figure 2-7 Mesure de la résistance

Mesure de l'impédance (Z)

Tous les composants du circuit, les résistances, les condensateurs et les bobines d'induction comportent des éléments parasites. Il peut par exemple s'agir de résistance indésirable dans les condensateurs, de capacité indésirable dans les bobines d'induction et d'inductance indésirable dans les résistances. Ainsi, les composants simples doivent être modélisés comme impdances complexes.

Configurez votre mesureur LCR pour mesurer l'impédance comme décrit dans la Figure 2-9.

R.	٦	0	C.	з	
		U			

Pour plus d'informations sur les théories de mesure de l'impédance, reportez-vous au *guide de mesure de l'impédance*. Ce document peut être téléchargé sur notre site Web à l'adresse http://www.keysight.com/find/lcrmeters.

- 1 Appuyez sur la touche 🔘 pour allumer le mesureur LCR.
- 2 Appuyez sur F^{req.} pour sélectionner une fréquence de test acceptable et appuyez sur ZLCR pour sélectionner la mesure d'impédance.

Figure 2-8 Mesure de l'impédance avec thêta

3 Connectez une résistance ou une pince de test à l'appareil.

- 2 Fonctions et caractéristiques Mesures
- Appuyez sur pour modifier la mesure de l'affichage secondaire (D, Q ou θ).
- **5** Lisez les affichages.

Figure 2-9 Mesure de l'impédance

Mesure du facteur de perte/facteur de qualité/angle de phase (D/Q/ θ)

Les valeurs du facteur de dissipation factor (D), du facteur de qualité (Q) d'angle de phase (θ) peuvent être affichées en alternance en appuyant sur la touche $\square^{\Theta \Theta}_{n-1}$ lorsque le mesureur LCR est en mode de mesure d'inductance, de capacité ou d'impédance.

Ce paramètre n'est pas applicable pour la mesure DCR.

Modification de la fréquence de test

Par défaut, la fréquence de test est de 1 kHz. Appuyez sur la touche Freq pour sélectionner la fréquence appropriée.

Modèle	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz
U1731C	~	~	~	-	-
U1732C	~	~	~	~	-
U1733C	~	~	~	~	~

Tableau 2-5 Fréquences de test disponibles

Sélection du mode de circuit parallèle/série (P/S)

Le mesureur LCR peut afficher les données en mode parallèle (P_{offic}) ou en série (s_{offic}) dans toutes les plages.

Appuyez sur la touche $\frac{|\mathbf{ZLCR}|}{|\mathbf{P} \rightarrow \mathbf{S}|}$ pendant au moins une seconde pour activer le parallèle ou série.

Le mode série est le paramètre par défaut. Vous pouvez cependant modifier ce comportement dans le menu de configuration. Reportez-vous à la « Modification du comportement au démarrage » à la page 54 pour plus d'informations sur comment changer de mode de mesure par défaut (parallèle ou série) pour les prochains démarrages. 2 Fonctions et caractéristiques Mesures

Définition du seuil de tolérance de standard (Tol%)

Les fourchettes de tolérance sont les suivantes : 1 %, 5%, 10% et 20%.

Pour activer le mode tolérance, insérez le composant approprié comme valeur standard dans la fiche ou raccordez les pinces de test aux cordons du composants, puis appuyez sur la touche pour définir cette valeur comme seuil de tolérance standard.

De même, toutes les valeurs qui s'affichent, par exemple Hold ou Max/Min/Avg (Rec) peuvent servir de référence pour analyser les composants. Appuyez à nouveau sur met pour passer de la tolérance 1 %, à 5 %, 10 %, puis 20 %.

Cette fonction est utile pour analyser des composants. L'appareil sonne trois fois lorsqu'un composant testé dépasse le seuil de tolérance. Il sonne une fois lorsque le composant figure dans la fourchette de tolérance.

NOTE

- Il n'est pas possible d'activer le mode tolérance lorsque le symbole BL est affiché ou lorsque la valeur de la capacité testée est inférieure à 50.
- Le mode de tolérance est uniquement disponible dans les plages manuelles. Cependant, l'activation en mode de plage automatique définit automatiquement le mesureur LCR en plage manuelle.

Activation des mesures ESR

Appuyez sur Sur Pour seconde pour sélectionner la mesure ESR. Utilisez la valeur ESR pour mesurer la résistance en série équivalente du condensateur, indépendamment de sa capacité.

Figure 2-11 Mesure ESR avec thêta

Appuyez sur 🏄 pendant plus d'une seconde pour quitter ce mode.

Activation des mesures DCR

Appuyez sur Frat pendant plus d'une seconde pour sélectionner la mesure DCR. La mesure DCR mesure la résistance d'un composant inconnu par 1 VCC.

•	OS-Factory
DCR	•••
	Auto
APO,	

Figure 2-12 Mesure DCR

Appuyez sur $[F_{v}^{max}]$ pendant plus d'une seconde pour quitter ce mode.

Caractéristiques supplémentaires

Blocage de l'écran (Hold)

Pour figer l'affichage pour une fonction, appuyez sur la touche ^[Hold]. L'annonciateur [Hold] s'affiche à l'écran lorsque la fonction Hold est active.

Figure 2-13 Utilisation de la fonction Hold

Appuyez à nouveau sur 🗺 pour mettre automatiquement le relevé à jour une fois qu'il est stable. L'annonciateur **Hold** clignote en attendant que le relevé se stabilise.

Appuyez sur Hold pendant plus d'une seconde pour désactiver la fonction Hold.

Activation du mode d'enregistrement statique (Rec)

Le mode d'enregistrement statique enregistre dans la mémoire du mesureur LCR les valeurs d'entrée maximum, minimum et moyenne au cours d'une série de mesures. Lorsque les entrées passent en dessous de la valeur minimale enregistrée ou au-dessus de la valeur maximale enregistrée, le mesureur LCR émet un signal sonore et enregistre la nouvelle valeur. Il calcule également la moyenne de tous les relevés depuis l'activation du mode d'enregistrement statique.

Vous pouvez consulter les statistiques suivantes sur l'écran du mesureur LCR pour toute série de relevés :

- Max : relevé le plus élevé depuis l'activation du mode d'enregistrement statique.
- Min : relevé le plus bas depuis l'activation du mode d'enregistrement statique
- Avg : moyenne de tous les relevés depuis l'activation du mode d'enregistrement statique
- MaxMinAvg : valeur actuelle (valeur réelle du signal en entrée)

Appuyez sur la touche $\frac{Mold}{Mec}$ pendant au moins une seconde pour activer le mode enregistrement statique.

Figure 2-14 Utilisation de la fonction Rec

Appuyez à nouveau sur *Hote* pour basculer entre les valeurs d'entrée maximale (Max), minimale (Min), moyenne (Avg) et actuelle (MaxMinAvg).

Pour quitter ce mode, appuyez sur la touche $\fbox{\sc mod}$ pendant au moins une seconde.

NOTE

- L'enregistrement statique permet uniquement d'enregistrer des valeurs stables et d'actualiser la mémoire. Il ne permet pas d'enregistrer les dépassements (CL), quelle que soit la fonction LCR. Par ailleurs, le mesureur LCR n'enregistre pas les valeurs de moins de 50 dans les mesures de capacité.
- L'enregistrement statique est uniquement disponible dans les plages manuelles. Cependant, l'activation en mode de plage automatique définit automatiquement le mesureur LCR en plage manuelle.

Définition de la comparaison de limite maxi/mini (Limite)

La fonction de comparaison de limite maxi et mini facilitent le tri des composants. Il existe 32 jeux de limites (16 définis par défaut et 16 définissables par l'utilisateur).

Le mesureur LCR utilise les valeurs définies en usine par défaut. Vous pouvez indiquer au mesureur LCR d'utiliser les jeux utilisateur au démarrage dans le menu de configuration. Pour plus d'informations, consultez la section « Modification de la catégorie et du jeu au démarrage » à la page 63.

Le Tableau 2-6 présente les valeurs limite par défaut de chaque ensemble.

Jeu	Limite maxi (H)	Limite mini (L)
F01	1000	900
F02	1200	1080
F03	1500	1350
F04	1800	1620
F05	2200	1980
F06	2700	2430
F07	3300	2970

Tableau 2-6 Valeurs maxi et mini par défaut

Jeu	Limite maxi (H)	Limite mini (L)
F08	3900	3510
F09	4700	4230
F10	5600	5040
F11	6800	6120
F12	8200	7380
F13	10000	9000
F14	12000	10800
F15	15000	13500
F16	18000	16200

Tableau 2-6 Valeurs maxi et mini par défaut (suite)

NOTE

Les valeurs par défaut des ensembles utilisateur variables sont les mêmes que celles des ensembles de valeurs utilisateur fixes. Utilisez le menu de configuration pour modifier les limites maxi et mini de chaque jeu. Pour plus d'informations, consultez la section « Modification des valeurs de limite utilisateur haute/basse » à la page 64.

Appuyez sur la touche *pendant* au moins une seconde pour activer le mode de limite maxi/mini. Le dernier jeu de chiffres connu (H## ou L##) est indiqué sur l'écran secondaire.

Figure 2-15 Utilisation de la fonction Limit

2 Fonctions et caractéristiques

Caractéristiques supplémentaires

Lorsque l'annonciateur *Limit* clignote, utilisez la touche de limites approprié.

Appuyez sur en ou raire défiler les valeurs maxi (H) et mini (L) affichées sur l'écran principal.

Figure 2-16 Valeurs maxi et mini

Appuyez sur *met* quand l'annonciateur *Limit* clignote pour lancer la comparaison. (Si aucune activité n'est détectée au bout de 3 secondes, la comparaison des limites commence.)

Le mesureur LCR sonne trois fois et affiche a_{loc} sur l'écran secondaire si le relevé est supérieur (\blacktriangle) à la limite maximale ou inférieur (\blacktriangledown) à la limite minimale.

Si le relevé se trouve dans les limites maxi et mini, le mesureur sonne une fois et affiche L_0 sur l'écran secondaire.

Figure 2-17 Indications nGo et Go

Le jeu de limites utilisé dans la comparaison est affiché après l'indication $nG_0/G_0.$

Appuyez sur $\fbox{\tiny \mbox{\tiny DMP}}$ pendant plus d'une seconde pour quitter ce mode.

Mesures relatives (Null)

Lorsque vous effectuez des mesures relatives (également appelées mesures null), chaque relevé correspond à la différence entre une valeur relative stockée (sélectionnée ou mesurée) et le signal en entrée.

L'une des méthodes consiste à accroître la précision d'une mesure d'une résistance en ne tenant pas compte de la résistance des cordons de test (court-circuit des cordons de test). Cette méthode est très utile lorsque vous envisagez d'effectuer des mesures de capacité (cordons de test ouverts).

Appuyez sur la touche and pour activer le mode relatif et enregistrer le relevé comme référence. Le mesureur LCR affiche ensuite tous les relevés suivants par rapport à la valeur de référence.

Figure 2-18 Utilisation de la fonction Null

L'annonciateur Δ s'affiche à l'écran lorsque le mode relatif est activé. Appuyez à nouveau sur Δ pour quitter le mode relatif.

NOTE

- Vous ne pouvez pas activer le mode relatif lorsque la valeur affichée est OL.
- Le mode relatif est uniquement disponible dans les plages manuelles.
 Cependant, l'activation en mode de plage automatique définit automatiquement le mesureur LCR en plage manuelle.
- Vous ne pouvez pas activer le mode relatif lorsque le mesureur est en mode commutation automatique et que le gel des données est activé.

Exécution de l'étalonnage en circuit ouvert et en court-circuit

La fonction CAL adapte (corrige) les paramètres internes du mesureur LCR ainsi que les résidus de connecteurs externes. Cette action vous permet de corriger l'influence des utilisations temporaires.

Il existe trois types d'étalonnage en circuit ouvert et en court-circuit :

- OS-Factory : L'étalonnage en circuit ouvert et en court-circuit est exécuté en mode d'étalonnage d'usine (protégé par un code de sécurité). Il couvre toutes les fréquences et toutes les plages.
- OS-User : L'étalonnage en circuit ouvert et en court-circuit est exécuté à chaque intervalle d'option de démarrage. Il couvre toutes les fréquences et toutes les plages. (voir page 11 pour la configuration de l'OS-User).
- L'étalonnage en circuit ouvert et en court-circuit pour une plage et une fréquence unique est effectué en maintenant la touche enfoncée pendant plus d'une seconde.

Les corrections pour et sont sont préenregistrées dans le mesureur LCR. Elles sont toutes deux étalonnées sur les bornes.

Vous pouvez configurer le mesureur LCR de façon à ce qu'il démarre par l'étalonnage en circuit ouvert et en court-circuit ou dans le menu de configuration (voir page 60).

Fonctions et caractéristiques 2 Caractéristiques supplémentaires

La fonctionnalité d'étalonnage en circuit ouvert et en court-circuit est disponible pour des plages de mesure fixes.

NOTE

Il est recommandé d'effectuer l'étalonnage en circuit ouvert et en court-circuit avant de réaliser des mesures précises.

Figure 2-19 Utilisation de la fonction Cal

Figure 2-20 Invites d'étalonnage ouvert et court-circuit

2 Fonctions et caractéristiques

Caractéristiques supplémentaires

- 1 Maintenez la touche enfoncée pendant au moins 1 seconde pour passer en mode d'étalonnage en circuit ouvert et en court-circuit pour la fréquence et la plage sélectionnées.
- 2 Des indications sur l'étalonnage en circuit ouvert et en court-circuit s'affichent à l'écran. Suivez les indications relatives au connecteur ouvert (**OPn**) ou court-circuité (**SHor**), puis appuyez sur la touche

L'indicateur **CAL** en haut à droite de l'écran clignotera, ce qui indique que la correction est en cours d'exécution.

3 Lorsque l'étalonnage en circuit ouvert et en court-circuit est terminé, l'affichage normal du mesureur LCR est rétabli et l'appareil est prêt à l'emploi.

3 Options de configuration

Utilisation du menu de configuration 50 Modification de valeurs numériques 51 Récapitulatif du menu de configuration 52 Options du menu de configuration 54 Modification du comportement au démarrage 54 Modification de la condition d'angle de phase de la fonction Ai 61 Modification de la catégorie et du jeu au démarrage 63 Modification des valeurs de limite utilisateur haute/basse 64 Modification du débit de données (en bauds) 66 Modification du contrôle de parité 67 Modification des bits de données 68 Modification de la fréquence du signal sonore 69 Verrouillage des touches 70 Modification des délais de temporisation du rétroéclairage et de l'extinction automatique 71 Réinitialisation des éléments de configuration 72

Le chapitre qui suit décrit comment modifier les fonctions prédéfinies de votre mesureur LCR.

3 Options de configuration Utilisation du menu de configuration

Utilisation du menu de configuration

Le menu de configuration vous permet de modifier un certain nombre de fonctions prédéfinies non volatiles. La modification de ces paramètres a une incidence sur plusieurs fonctions et donc sur l'utilisation du mesureur LCR. Sélectionnez un paramètre à modifier pour effectuer l'une des opérations suivantes :

- Passer d'une valeur à l'autre : par exemple, on (activé) ou off (désactivé).
- Parcourir les différentes valeurs d'une liste prédéfinie.
- Diminuer ou augmenter une valeur numérique dans une plage fixe.

Le contenu du menu de configuration (Setup) est décrit dans le Tableau 3-2 à la page 52.

Légende	Description
	Maintenez enfoncé (Ref) tout en mettant en marche le mesureur LCR (()) pour accéder au menu de configuration. Appuyez sur (Ref) pendant plus d'une seconde pour quitter ce mode.
DQ⊖ Limit ◀ ► Auto	Appuyez sur $\frac{\text{page}}{\text{limet}}$ ou $\frac{\text{page}}{\text{limet}}$ pour faire défiler les options du menu.
Ai Freq. V	Appuyez sur (*) ou (***********************************
Hold Rec ZLCR P↔S	Lorsque l'option de menu clignote, appuyez sur Me pour enregistrer vos modifications. Lorsque l'option de menu clignote, appuyez sur ZLOR pour ignorer vos modifications.

 Tableau 3-1
 Fonctions des touches du menu de configuration (Setup)

Modification de valeurs numériques

Lors de la modification de valeurs numériques, utilisez les touches et region pour positionner le curseur sur un chiffre.

- Appuyez sur Dee pour déplacer le curseur vers la gauche.
- Appuyez sur Range pour déplacer le curseur vers la droite.

Une fois le curseur positionné sur un chiffre, utilisez les touches $\stackrel{\texttt{A}^{\iota}}{\longrightarrow}$ et $\stackrel{\texttt{Feq.}}{\longrightarrow}$ pour le modifier.

- Appuyez sur A pour augmenter la valeur numérique.
- Appuyez sur Free pour diminuer la valeur numérique.

Une fois les modifications effectuées, appuyez sur $\frac{\text{Hod}}{\text{Med}}$ pour enregistrer la nouvelle valeur numérique. (Ou, si vous souhaitez ignorer les modifications effectuées, appuyez sur $\frac{\text{ZLOR}}{\text{Press}}$.)

Récapitulatif du menu de configuration

Récapitulatif du menu de configuration

Les options du menu de configuration (Setup) sont mentionnées dans le tableau ci-dessous. Cliquez sur la page « En savoir plus » correspondant à une option de menu pour obtenir un complément d'information à son sujet.

Tableau 3-2 Description des options du menu de configuration

Légende	Paramètres proposés	Description	En savoir plus :
Pon E SPE	<i>Ai</i> , Z, L, C, R, ESR ou DCR	Définissez le type de mesure au démarrage du mesureur LCR. Le mode par défaut est identification automatique (<i>Ai</i>).	page 54
Pon FrE9	100 Hz, 120 Hz, 1 kHz, 10 kHz ou 100 kHz	Définissez la fréquence de test au démarrage du mesureur LCR. La valeur par défaut est de 1 kHz.	page 56
Pon AUL o	D, Q ou θ et P ou S	Définissez le paramètre d'inductance (L) secondaire et le mode de mesure au démarrage du mesureur LCR. Les valeurs par défaut sont : facteur de qualité (Q) et série (S).	page 57
Pon ÂUE o	D, Ω ou θ et P ou S	Définissez le paramètre de capacité (C) secondaire et le mode de mesure au démarrage du mesureur LCR. Les valeurs par défaut sont : facteur de dissipation (Q) et série (S).	page 58
Pon ÁUL o	D, Q ou θ et P ou S	Définissez le paramètre de résistance (R) secondaire et le mode de mesure au démarrage du mesureur LCR. Les valeurs par défaut sont : angle de phase (θ) et série (S).	page 59
۵۶۵ FRCŁ	FACt ou USEr	Définissez le mode d'étalonnage en circuit ouvert et en court-circuit au démarrage du mesureur LCR. La valeur par défaut est usine (FACt).	page 60
R, [™] []	05° à 45°	Définissez la condition d'angle de phase pour le mode d'identification automatique (<i>Ai</i>). La valeur par défaut est 10°.	page 61
Pon FEO 1	Ft01 à Ft16 ou Ur01 à Ur16	Définissez la catégorie limite (usine ou utilisateur) et le jeu (01 à 16) au démarrage du mesureur LCR. La valeur par défaut est Ft01.	page 63
Légende	Paramètres proposés	Description	En savoir plus :
-------------------------	---	--	------------------
HO I 1000	H01 à H16 ou L01 à L16 O à 19999	Définir les limites maxi et mini pour chaque jeu de variables utilisateur. Reportez-vous à la <mark>Tableau 3-4 à</mark> la page 64 pour les valeurs par défaut de l'utilisateur.	page 64
ьрс 9600	9600 ou 19200	Définir le débit en bauds pour les communications à distance avec un ordinateur (9600 ou 19200). La valeur par défaut est 9600.	page 66
_{PRr}	En, nonE ou odd	Définir le bit de parité pour les communications à distance avec un ordinateur (aucun, pair ou impair). La valeur par défaut est "aucun" (none).	page 67
_{dЯŁ} 8Ь, Ł	7 bits ou 8 bits	Définir la longueur de bit de données pour les communications à distance avec un ordinateur (7 bits ou 8 bits). La valeur par défaut est 8 bits.	page 68
ьер ЧООО	2000 Hz, 3000 Hz, 4000 Hz ou oFF (désactivé)	Définir la fréquence de la sonnerie du mesureur LCR (2000 Hz, 3000 Hz, 4000 Hz ou désactivé). La valeur par défaut est de 4000 Hz.	page 69
LРЬ oFF	oFF ou on	Verrouiller les boutons du mesureur LCR. La valeur par défaut est Off.	page 70
_{RP0}	01 à 99 minutes ou oFF	Définir le délai d'extinction automatique sur une valeur comprise entre 1 et 99 minutes (soit 1 heure et 39 minutes) ou sur Off. La valeur par défaut est de 5 minutes.	
ын ЭО	01 à 99 s ou oFF	Définir le délai de temporisation du rétroéclairage de l'écran LCD sur une valeur comprise entre 1 et 99 secondes (soit 1 minute et 39 secondes) ou sur Off. La valeur par défaut est de 30 secondes.	page 71
۶۶ defr	dEFA	Rétablir les paramètres d'usine du mesureur LCR.	page 72

 Tableau 3-2
 Description des options du menu de configuration (suite)

Options du menu de configuration

Modification du comportement au démarrage

Vous pouvez modifier le comportement au démarrage de votre mesureur LCR pour les cycles d'alimentation suivants.

Paramètre	Plage	Paramètre par défaut
Pon-tYPE	Ai, Z, L, C, R, ESR ou DCR	Ai
Pon-FrEq	100 Hz, 120 Hz, 1 kHz, 10 kHz ou 100 kHz	1 kHz
Pon-AUto (L)	 D, Q ou °θ Parallèle ou Série 	• Q • Série
Pon-AUto (C)	 D, Q ou °θ Parallèle ou Série 	• D • Série
Pon-AUto (R)	 D, Q ou °θ Parallèle ou Série 	 °θ Série
Pon-oSC	FACt ou USEr	FACt

Modification du type de mesure au démarrage

Utilisez cet élément de configuration pour modifier le type de mesure initial du mesureur LCR. Vous pouvez définir le mesureur LCR pour qu'il démarre en

- mode Ai d'auto-identification,
- mesure d'impédance (Z),
- mesure d'inductance (L),
- mesure de capacité (C),
- mesure de résistance (R),
- mode de résistance série (ESR) ou
- mode résistance continu (DCR) pour U1733C uniquement

Le mesureur LCR démarre avec le type de mesure sélectionné pour les cycles à suivre.

Figure 3-1 Modification du type de mesure au démarrage

3 Options de configuration

Options du menu de configuration

Modification de la fréquence de test au démarrage

Utilisez cet élément de configuration pour modifier la fréquence de test initiale du mesureur LCR. Vous pouvez définir le mesureur LCR de façon à démarrer sur une fréquence de test de 100 Hz à 100 kHz.

Le mesureur LCR démarre avec fréquence de test sélectionnée pour les cycles à suivre.

Figure 3-2 Modification de la fréquence de test au démarrage

Modification du paramètre secondaire et du mode de mesure des mesures d'inductance (L) au démarrage.

Utilisez cet élément de configuration pour modifier le paramètre secondaire initial de la mesure d'inductance (**L**), le facteur de dissipation (**D**), le facteur de qualité (**Q**) ou l'angle de phase (θ) et le mode de mesure, parallèle ou série.

La mesure d'inductance $({\sf L})$ commence avec le paramètre secondaire et le mode de mesure sélectionnés pour les cycles suivants.

Figure 3-3 Modification du paramètre secondaire et du mode de mesure des mesures d'inductance (L) au démarrage.

3 Options de configuration

Options du menu de configuration

Modification du paramètre secondaire et du mode de mesure des mesures de capacité (C) au démarrage

Utilisez cet élément de configuration pour modifier le paramètre secondaire initial de la mesure de capacité (C), le facteur de dissipation (D), le facteur de qualité (Q) ou l'angle de phase (θ) et le mode de mesure, parallèle ou série.

La mesure de capacité (\mathbf{C}) commence avec le paramètre secondaire et le mode de mesure sélectionnés pour les cycles suivants.

Figure 3-4 Modification du paramètre secondaire et du mode de mesure des mesures de capacité (C) au démarrage

Modification du paramètre secondaire et du mode de mesure des mesures de résistance (R) au démarrage

Utilisez cet élément de configuration pour modifier le paramètre secondaire initial de la mesure de résistance (**R**), le facteur de dissipation (**D**), le facteur de qualité (**Q**) ou l'angle de phase (θ) et le mode de mesure, parallèle ou série.

La mesure de résistance (\mathbf{R}) commence avec le paramètre secondaire et le mode de mesure sélectionnés pour les cycles suivants.

Figure 3-5 Modification du paramètre secondaire et du mode de mesure des mesures de résistance (R) au démarrage

3 Options de configuration

Options du menu de configuration

Modification de l'étalonnage en circuit ouvert et en court-circuit au démarrage

Utilisez cet élément de menu de configuration pour définir l'étalonnage en circuit ouvert et en court-circuit initial du mesureur avec les paramètres d'usine (**FACt**) ou définis par l'utilisateur (**USEr**).

Le mesureur LCR démarrera avec l'étalonnage en circuit ouvert et en court-circuit sélectionné pour les cycles à suivre.

Figure 3-6 Modification de l'étalonnage en circuit ouvert et en court-circuit au démarrage

Modification de la condition d'angle de phase de la fonction Ai

Ce paramètre est utilisé avec la fonction *Ai* (page 26). La fonction *Ai* permet d'identifier automatiquement les mesures L, C et R selon l'angle de l'impédance détectée dans l'appareil testé.

Utilisez cet élément de configuration pour modifier l'angle de phase par défaut de la fonction Ai, entre 5° and 45°.

Paramètre	Plage	Paramètre par défaut
Ai	(5 à 45)°	10°

Tableau 3-3 présente la corrélation entre l'angle de phase détecté et les mesures L, C et R sélectionnées.

Angle de phase ^[1]	Affichage principal	Affichage secondaire
$-\mathbf{Set} < \theta < +\mathbf{Set}$	R	θ
$\theta \geq \textbf{+Set}$	L	۵
θ≤ –Set	C	D

Tableau 3-3 Règles d'auto-identification de l'angle de phase

[1] Lorsque **±Set** est l'angle de phase sélectionné.

3 Options de configuration

Options du menu de configuration

Figure 3-7 Modification de la condition d'angle de phase de la fonction Ai

Modification de la catégorie et du jeu au démarrage

Ce paramètre est utilisé avec la fonction de comparaison de limite (page 42). Il existe 32 jeux de limites (16 définis par défaut et 16 définissables par l'utilisateur).

Utilisez cet élément de configuration pour modifier la catégorie (usine ou utilisateur) et le jeu par défaut (1 à 16) pour les démarrage suivants.

Paramètre	Plage	Paramètre par défaut
Pon	Usine (Ft01 à Ft16) ouUtilisateur (Ur01 à Ur16)	Ft01

Figure 3-8 Modification de la catégorie et du jeu au démarrage

Options du menu de configuration

Modification des valeurs de limite utilisateur haute/basse

Ce paramètre est utilisé avec la fonction de comparaison de limite (page 42). Il existe 16 jeux de variables utilisateur.

Utilisez cet élément de configuration pour modifier les limites maxi et mini de chaque jeu de variables utilisateur.

NOTE

La limite inférieure peut être définie sur 0 ou en-dessous ou sur la limite supérieure et la limite supérieure peut être définie entre la limite inférieure et le nombre maximal d'affichage (19999).

Paramètre	Plage	Paramètre par défaut
 H(01 à 16) ou L(01 à 16) 	0 à 19999	Reportez-vous à la <mark>Tableau 3-4</mark>

Le Tableau 3-4 présente les valeurs limite par défaut de chaque ensemble.

Jeu	Limite maxi (H)	Limite mini (L)
U01	1000	900
U02	1200	1080
U03	1500	1350
U04	1800	1620
U05	2200	1980
U06	2700	2430
U07	3300	2970
U08	3900	3510
U09	4700	4230

Jeu	Limite maxi (H)	Limite mini (L)
U10	5600	5040
U11	6800	6120
U12	8200	7380
U13	10000	9000
U14	12000	10800
U15	15000	13500
U16	18000	16200

Tableau 3-4	Valeurs par	défaut de	limite ι	utilisateur	haute/	basse	(suite)
-------------	-------------	-----------	----------	-------------	--------	-------	---------

Figure 3-9 Modification des valeurs de limite utilisateur haute/basse

Modification du débit de données (en bauds)

Ce paramètre est utilisé avec le lien de communication infrarouge et le logiciel Keysight GUI Data Logger software pour contrôler votre mesureur LCR à distance (page 10).

Utilisez cet élément de configuration pour modifier le débit de la communication à distance avec le PC.

Paramètre	Plage	Paramètre par défaut
bPS	(9600 ou 19200) bits/seconde	9600 bits/seconde

Figure 3-10 Modification du débit de données (en bauds)

Modification du contrôle de parité

Ce paramètre est utilisé avec le lien de communication infrarouge et le logiciel Keysight GUI Data Logger software pour contrôler votre mesureur LCR à distance (page 10).

Utilisez cet élément de configuration pour modifier le contrôle de parité de la communication à distance avec le PC.

Paramètre	Plage	Paramètre par défaut
PAr	nonE, En ou odd	nonE
Press v	PRr JE ↑ Res A PRr	
Ress V	dd PRr	

Figure 3-11 Modification du contrôle de parité

En

Options du menu de configuration

Modification des bits de données

Ce paramètre est utilisé avec le lien de communication infrarouge et le logiciel Keysight GUI Data Logger software pour contrôler votre mesureur LCR à distance (page 10).

Utilisez cet élément de configuration pour modifier le nombre de bits de données de la communication à distance avec le PC. Le nombre de bits d'arrêt est toujours 1. Cette valeur n'est pas modifiable.

Paramètre	Plage	Paramètre par défaut
dAt	7 bits ou 8 bits	8 bits

Figure 3-12 Modification des bits de données

Modification de la fréquence du signal sonore

La sonnerie du mesureur LCR alerte l'utilisateur en présence de nouvelles valeurs pour des enregistrements statiques, des valeurs détectées hors de la tolérance ou des limites définies, ainsi que lors d'opérations non conformes sur le clavier.

Utilisez cet élément de configuration pour modifier la fréquence de déclenchement de la sonnerie.

Figure 3-13 Modification de la fréquence du signal sonore

Options du menu de configuration

Verrouillage des touches

Utilisez cet élément de configuration pour verrouiller les touches de votre mesureur LCR. S'il est activé, les touches sont verrouillées une fois que vous quittez le menu de configuration.

Déverrouillez de nouveau les boutons en entrant dans le menu configuration dans les options de démarrage (page 11).

Paramètre	Plage	Paramètre par défaut
LPb	on ou oFF	oFF

Figure 3-14 Verrouillage des touches

Modification des délais de temporisation du rétroéclairage et de l'extinction automatique

Les fonctions d'extinction automatique (voir page 6) et de rétroéclairage (voir page page 7) du mesureur LCR sont réglées par un minuteur.

Paramètre	Plage		Param défaut	ètre par
APo	(01 to 99) n	ninutes ou oFF	05 minutes	
bLt	(01 to 99) s	econdes ou oFF	30 sec	ondes
	RPo		ЫLЕ	
APO,	99	APO	39	
Rress ♥ ♥	Ress A	Press V V	Press A	
	RPo		666	
APO,	05	470)	30	
Press V	Ress ▲	Press V	Press ▲	
	RPo		ЫLЬ	
APO)	<u>0</u> 4	APO	29	
Ress ♥ ♥	A Press ▲	Press V	Press 🛦	
	RPo		6LE	
	FF			

Figure 3-15 Modification des délais de temporisation du rétroéclairage et de l'extinction automatique

Options du menu de configuration

Réinitialisation des éléments de configuration

Les éléments de configuration peuvent reprendre leur valeur par défaut via cette option.

Appuyez sur Heet pour effectuer la réinitialisation. Le mesureur LCR sonne une fois, quitte le menu de configuration et revient en mode de fonctionnement normal.

Paramètre	Plage	Paramètre par défaut
rSt	dEFA	dEFA

Figure 3-16 Réinitialisation des éléments de configuration

4 Caractéristiques et spécifications

Caractéristiques du produit 74 Spécifications prévisionnelles 75 Spécifications électriques 76 Spécifications Impédance/Résistance/DCR 76 Spécifications de capacité 77 Spécifications d'inductance 78 Angle de phase des spécifications d'impédance 79 Spécifications du facteur de dissipation/qualité 80 Spécifications du signal de test 81 Impédance source de la mesure d'impédance/résistance 82 Impédance source de la mesure de capacité 83 Impédance source de la mesure d'inductance 84 Spécifications relatives aux pinces SMD 85 Caractéristiques électriques 86

Ce chapitre présente les caractéristiques, hypothèses et spécifications techniques des Mesureur LCR portable U1731C, U1732C et U1733C.

4 Caractéristiques et spécifications Caractéristiques du produit

Caractéristiques du produit

NOTE

Sauf indication contraire, les caractéristiques mentionnées dans le tableau ci-dessous s'appliquent aux modèles U1731C, U1732C et U1733C.

ALIMENTATION ÉLECTRIQUE

Type de pile:

- 1 pile alcaline 9 V (ANSI/NEDA 1604A ou CEI 6LR61) ou
- 1 pile au chlorure de zinc 9 V (ANSI/NEDA 1604D ou CEI 6F22) Autonomie:
- 16 heures en utilisation normale (pile alcaline neuve sans rétroéclairage)
- L'indicateur de faible niveau des piles clignote lorsque la tension de piles passe sous le seuil des 7,2 V (environ)

Adaptateur CC externe

CC 12 V ± 10 % or 10,8 V_{MIN} à 13,2 V_{MAX}

PUISSANCE UTILISÉE

225 mVA maximum (sans rétroéclairage)

AFFICHAGE

Deux écrans à cristaux liquides (LCD)

- Écran principal de 4,5 chiffres avec un maximum de 19999
- Écran secondaire de 3 chiffres avec un maximum de 999

VITESSE DE MESURE

• 1 fois par seconde, nominale

ENVIRONNEMENT D'EXPLOITATION

- Température de fonctionnement entre –10 °C et 55 °C, de 0 % à 80 % d'humidité relative (HR)
- Précision optimale avec une humidité relative de 80 % à une température n'excédant pas 30 °C (diminution linéaire jusqu'à 50 % d'humidité relative à 55 °C)
- Altitude jusqu'à 2 000 m
- · Degré 2 de pollution

CONDITIONS DE STOCKAGE

-20 °C à 70 °C, 0 % à 80 % HR

SECURITÉ ET COMPATIBILITÉ ÉLECTROMAGNÉTIQUE (EMC)

- CEI61010-1:2001/EN61010-1:2001 (deuxième édition)
- CEI 61326-1:2005/EN 61326-1:2006
- · Canada : ICES/NMB-001 : édition 4 juin 2006
- Australie/Nouvelle Zélande : AS/NZS CISPR11:2004

COEFFICIENT DE TEMPÉRATURE

0.1 x (précision spécifiée) / °C (de -10 °C à 18 °C ou de 28 °C à 55 °C).

PROTECTION EN ENTRÉE

Protection de surtension réinitialisable.

DIMENSIONS (I x H x P)

87 × 184 × 41 mm

POIDS

337 grammes (avec pile)

GARANTIE

Reportez-vous à http://www.keysight.com/go/warranty_terms

- · Trois ans sur le produit
- · 3 mois pour les accessoires standard (sauf indication contraire).
- · Notez que pour le produit, ma garantie ne couvre pas :
 - Dégâts de contamination
 - Usure normale des composants mécaniques
 - Les manuels et les piles jetables standard

CYCLE D'ÉTALONNAGE

Un an

Spécifications prévisionnelles

- La précision est égale à ± (% de la valeur + nombre de chiffres de plus faible poids) à 23 °C ± 5 °C, avec une humidité relative inférieure à 80 %.
- La mesure effectuée sur la prise de test du composant et les corrections nécessaires doivent être effectuées avant de vérifier la précision de l'instrument.
- La précision est vérifiée par la conception et par des tests de type spécifique.

4 Caractéristiques et spécifications Spécifications électriques

Spécifications électriques

NOTE

Les spécifications prévisionnelles figurent à la page 75.

Spécifications Impédance/Résistance/DCR

Tableau 4-1 Spécifications Impédance/Résistance/DCR

		Précision = A _Z + Décalage						
		DCR	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz	
Plage	Kesolution	U1733C uniquement	Tous les modèles	Tous les modèles	Tous les modèles	U1733C et U1732C uniquement	U1733C uniquement	
2 Ω ^[1]	0.0001 Ω	0.7% + 50	0.7% + 50	0.7% + 50	0.7% + 50	0.7% + 50	1.0% + 50	
20 $\Omega^{[1]}$	0.001 Ω	0.7% + 8	0.7% + 8	0.7% + 8	0.7% + 8	0.7% + 8	0.7% + 8	
200 $\Omega^{[1]}$	0,01 Ω	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,5 % + 5	
2000 Ω	0,1 Ω	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,5 % + 5	
20 kΩ	0,001 kΩ	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,5 % + 5	
200 kΩ	0,01 kΩ	0,5% + 5	0,5% + 5	0,5% + 5	0,5% + 5	0,5% + 5	0.7% + 8	
2000 kΩ	0,1 kΩ	0,5% + 5	0,5% + 5	0,5% + 5	0,5% + 5	0.7% + 5	-	
20 MΩ ^[2]	0,001 MΩ	2.0% + 8	2.0% + 8	2.0% + 8	2.0% + 8	5.0% + 8	-	
$200 \ M\Omega^{[2]}$	0,01 MΩ	6.0% + 80	6.0% + 80	6.0% + 80	6.0% + 80	-	-	

Remarques :

1 La précision de la plage 2 Ω à 200 Ω est spécifiée une fois que la fonction Null est utilisée pour soustraire la résistance des cordons test et du contact.

2 Dans le cas des plages de 20 M Ω et 200 M Ω , l'humidité relative est spécifiée pour <60 %.

- 3 La mesure de résistance est spécifiée de Q <10 et D >0,1, sinon la précision est spécifiée comme $(A_z + Offset) \times \sqrt{1 + Q^2}$.
- 4 La mesure ESR (résistance série) est spécifiée selon la mesure d'impédance et la plage. L'affichage maximal est de 199,99 k Ω et la précision est spécifiée comme $(A_Z + Offset) \times \sqrt{1+Q^2}$.

Spécifications de capacité

Tableau 4-2 Spécifications de capacité

		Précision = A _C + Décalage					
Plage	_/	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz	
	Résolution	Tous les modèles	Tous les modèles	Tous les modèles	U1733C et U1732C uniquement	U1733C uniquement	
20 mF	0,001 mF	0.5% + 8	0.5% + 8	-	-	-	
2000 μF	0,1 μF	0,5% + 5	0,5% + 5	0.5% + 8	-	-	
200 μF	0,01 µF	0,3 % + 3	0,3 % + 3	0,5 % + 5	0.5% + 8	-	
20 µF	0,001 μF	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,5 % + 5	5.0% + 10	
2000 nF	0,1 nF	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,2 % + 3	0.7% + 10	
200 nF	0,01 nF	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,5% + 3	0.7% + 10	
20 nF	0,001 nF	0,5% + 5	0,5% + 5	0,2 % + 3	0,5% + 3	0.7% + 10	
2000 pF ^[1]	0,1 pF	0.5% + 10	0.5% + 10	0,5 % + 5	0,5% + 3	2 % + 10	
200 pF ^[1]	0.01 pF	-	-	0.5% + 10	0.8% + 10	2 % + 10	
20 pF ^[1]	0.001 pF	-	-	-	1.0% + 20	2.5% + 10	

Remarques :

- 1 La précision de la plage 20 pF à 2000 pF est spécifiée une fois que la fonction Null est utilisée pour soustraire la capacité des cordons test.
- 2 La précision du condensateur en céramique est influencée par la constante diélectrique (K) du matériau utilisé pour la fabrication du condensateur céramique. Pour plus d'informations sur les facteurs d'influence, reportez-vous à la section *Facteurs de dépendance des composants* du *Manuel de mesure de l'impédance*, téléchargeable gratuiteemnt à l'adresse http://www.keysight.com/find/lcrmeters.

4 Caractéristiques et spécifications Spécifications électriques

Spécifications d'inductance

Tableau 4-3 Spécifications d'inductance

		Précision = A _L + Décalage				
Plage		100 Hz	120 Hz	1 kHz	10 kHz	100 kHz
	Késolution	Tous les modèles	Tous les modèles	Tous les modèles	U1733C et U1732C uniquement	U1733C uniquement
20 µH	0,001 µH	-	-	-	1.0% + 5	2.5% + 20
200 µH	0,01 µH	-	-	1.0% + 5	0.7% + 3	2.5% + 20
2000 µH	0,1 μH	0.7% + 10	0.7% + 10	0,5% + 3	0,5% + 3	0.8% + 20
20 mH	0.001 mH	0,5% + 3	0,5% + 3	0,2 % + 3	0,3 % + 3	0.8% + 10
200 mH	0.01 mH	0,5% + 3	0,5% + 3	0,2 % + 3	0,2 % + 3	1.0% + 10
2000 mH	0.1 mH	0,2 % + 3	0,2 % + 3	0,2 % + 3	0,5 % + 5	1.0% + 10
20 H	0.001 H	0,2 % + 3	0,2 % + 3	0,5 % + 5	1.0% + 5	2 % + 10
200 H	0.01 H	0.7% + 5	0.7% + 5	1.0% + 5	2.0% + 8	-
2000 H	0.1 H	1.0% + 5	1.0% + 5	2.0% + 8	-	-

Angle de phase des spécifications d'impédance

Tableau 4-4 Angle de phase des spécifications d'impédance

Plage	Résolution	$\mathbf{Pr\acute{e}cision}=\boldsymbol{\theta}_{\mathbf{e}}$	État	
-180° à 180°	0.1°/1°	$\left(A_{Z} + \frac{Offset}{Z_{x}}\right) \times \frac{180}{\pi}$	D < 1 ou Q > 1	

Remarques :

1 Les variables A_Z et Offset , A C et sont à la précision spécifiée dans le Tableau 4-1, « Spécifications Impédance/Résistance/DCR » à la page 76.

2 La variable π est arrondie à 3,14159.

Impédance	Z _X	Az	Offset	θ_{e}
1999.9 Ω	19999	0.2%	3	±0.12°
199.9 Ω	1999	0.2%	3	±0.20°
19.9 Ω	199	0.2%	3	±0.98°
1.9 Ω	19	0.2%	3	±9.16°

Spécifications du facteur de dissipation/qualité

Plage	Résolution	$\textbf{Précision} = \boldsymbol{\theta}_{\textbf{e}}$	État
Z	0,001 à 999	$A_Z + \frac{Offset}{Z_X} \times 100\% + 3$	D < 1 ou Q > 1
L	0,001 à 999	$A_L + \frac{Offset}{L_x} \times 100\% + 3$	D < 1 ou Q > 1
C	0,001 à 999	$A_C + \frac{Offset}{C_x} \times 100\% + 3$	D < 1 ou Q > 1

Tableau 4-5 Spécifications du facteur de dissipation/qualité

Remarques :

- Les variables A_Z, A_L, A_C et Offset sont à la précision spécifiée dans le Tableau 4-1, Tableau 4-2 et Tableau 4-3 respectivement.
- 2 Les variables Z_x, L_x et C_x représentent le nombre d'affichages du relevé. Par exemple, la valeur C_x est 8888 si la capacité est de 88,88 μF pour la plage de 200 μF.
- 3 Le facteur de qualité est inversement proportionnel au facteur de dissipation.

Capacité	C _X	A _C	Offset	D _e
88.88 µF	8888	0.2%	3	0.203% + 3

Spécifications du signal de test

Tableau 4-6 Spécifications du signal de test

Sélection		Niveau du s	ignal de test	Fréquence de test	
		Niveau	Précision	Fréquence	Précision
100 Hz	Tous les modèles	0.74 Veff	0.05 Veff	100 Hz	0.01%
120 Hz	Tous les modèles	0.74 Veff	0.05 Veff	120.481 Hz	0.01%
1 kHz	Tous les modèles	0.74 Veff	0.05 Veff	1 kHz	0.01%
10 kHz	U1733C et U1732C uniquement	0.70 Veff	0.05 Veff	10 kHz	0.01%
100 kHz	U1733C uniquement	0.70 Veff	0.05 Veff	100 kHz	0.01%
DCR	U1733C uniquement	1.235 V	0,05 V	-	-

Impédance source de la mesure d'impédance/résistance

	Impédance source type						
Plage	DCR	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz	
	U1733C uniquement	Tous les modèles	Tous les modèles	Tous les modèles	U1733C et U1732C uniquement	U1733C uniquement	
2 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	
20 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	
200 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	
2000 Ω	1 kΩ	1 kΩ	1 kΩ	1 kΩ	1 kΩ	1 kΩ	
20 k Ω	10 kΩ	10 kΩ	10 kΩ	10 kΩ	10 kΩ	1 kΩ	
200 k Ω	100 kΩ	100 k Ω	100 k Ω	100 kΩ	10 kΩ	1 kΩ	
2000 kΩ	100 kΩ	100 k Ω	100 k Ω	100 kΩ	10 kΩ	-	
20 MΩ	100 kΩ	100 k Ω	100 kΩ	100 kΩ	100 k Ω	-	
200 MΩ	100 kΩ	100 k Ω	100 kΩ	100 kΩ	-	-	

 Tableau 4-7
 Impédance source de la mesure d'impédance/résistance

Impédance source de la mesure de capacité

	Impédance source type							
Plage	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz			
	Tous les modèles Tous les modèles		Tous les modèles	U1733C et U1732C uniquement	U1733C uniquement			
20 mF	100 Ω	100 Ω	-	-	-			
2000 μF	100 Ω	100 Ω	100 Ω	-	-			
200 μF	100 Ω	100 Ω	100 Ω	100 Ω	-			
20 μF	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω			
2000 nF	1 kΩ	1 kΩ	100 Ω	100 Ω	100 Ω			
200 nF	10 kΩ	10 kΩ	1 kΩ	100 Ω	100 Ω			
20 nF	100 kΩ	100 kΩ	10 kΩ	1 kΩ	100 Ω			
2000 pF	100 kΩ	100 kΩ	100 kΩ	10 kΩ	1 kΩ			
200 pF	-	-	100 kΩ	10 kΩ	1 kΩ			
20 pF	-	-	-	10 k $\Omega^{[1]}$	1 kΩ			

Tableau 4-8 Impédance source de la mesure de capacité

[1] Cette valeur spécifiée est uniquement applicable pour les versions de microprogramme 00.21 et ultérieures. Pour les versions de microprogramme antérieures à 00.21, la valeur d'impédance est définie sur 100 kΩ.

Impédance source de la mesure d'inductance

	Impédance source type						
Plage	100 Hz 120 Hz		1 kHz	10 kHz	100 kHz		
	Tous les modèles	Tous les modèles	Tous les modèles	U1733C et U1732C uniquement	U1733C uniquement		
20 µH	-	-	-	100 Ω	100 Ω		
200 μH	-	-	100 Ω	100 Ω	100 Ω		
2000 μH	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω		
20 mH	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω		
200 mH	100 Ω	100 Ω	100 Ω	1 kΩ	1 kΩ		
2000 mH	100 Ω	100 Ω	1 kΩ	10 kΩ	1 kΩ		
20 H	1 kΩ	1 kΩ	10 kΩ	10 kΩ	1 kΩ		
200 H	10 kΩ	10 kΩ	100 kΩ	10 k $\Omega^{[1]}$	-		
2000 H	100 kΩ	100 kΩ	100 kΩ	-	-		

Tableau 4-9 Impédance source de la mesure d'inductance

[1] Cette valeur spécifiée est uniquement applicable pour les versions de microprogramme 00.21 et ultérieures. Pour les versions de microprogramme antérieures à 00.21, la valeur d'impédance est définie sur 100 kΩ.

Spécifications relatives aux pinces SMD

Le modèle Keysight U1782B est une pince à utiliser avec les modèles de mesureurs LCR portables U1700. Cette pince est utilisée lors de la mesure de composants de type SMD. Enfichez la base de la pince dans les bornes + (HI-SENSE), – (LO-SENSE) et GUARD du mesureur LCR. Assurez-vous que l'orientation de la base correspond à la polarité du mesureur LCR.

Il est conseillé de mesurer la longueur des composants SMD, ainsi que l'écartement maximal des pinces. La longueur approximative de la pince est de 815 mm (voir la Figure 4-1).

Figure 4-1 Pince U1782B SMD

4 Caractéristiques et spécifications

Spécifications relatives aux pinces SMD

Caractéristiques électriques

Paramètres	Critères de test	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz
Cp Capacité parallèle	Pinces écartées	<0,7 pF				
Rs Résistance série	Pinces droites	<0,5 Ω				
Ls Inductance série	Pinces droites	<1,2 µH				

Tableau 4-10 Caractéristiques électriques de la pince U1782B SMD

Remarques:

1 La précision repose sur un critère de 23 °C \pm 5 °C et <75 % d'humidité relative

2 Il est recommandé d'effectuer un étalonnage en circuit ouvert et en court-circuit du mesureur LCR avant d'utiliser la pince

www.keysight.com

Pour nous contacter

Pour obtenir un dépannage, des informations concernant la garantie ou une assistance technique, veuillez nous contacter aux numéros suivants.

Etats-Unis :				
(tél.) 800 829 4444	(fax) 800 829 4433			
Canada :				
(tél.) 877 894 4414	(fax) 800 746 4866			
Chine :				
(tél.) 800 810 0189	(fax) 800 820 2816			
Europe :				
(tél.) 31 20 547 2111				
Japon :				
(tél.) (81) 426 56 7832	(fax) (81) 426 56 7840			
Corée :				
(tél.) (080) 769 0800	(fax) (080) 769 0900			
Amérique latine :				
(tél.) (305) 269 7500				
Taïwan :				
(tél.) 0800 047 866	(fax) 0800 286 331			
Autres pays de la région Asie Pacifique :				
(tél.) (65) 6375 8100	(fax) (65) 6755 0042			

Ou consultez le site Web Keysight à l'adresse : www.keysight.com/find/assist

Les spécifications et descriptions de produit contenues dans ce document peuvent faire l'objet de modifications sans préavis. Reportez-vous au site Web d'Keysight pour obtenir la dernière mise à jour.

Ces informations sont sujettes à modification sans préavis. © Keysight Technologies 2011 - 2014 Édition 6, Novembre 2014

