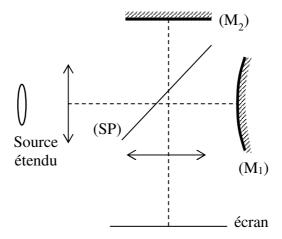
L'interféromètre de Twyman est une variante de l'interféromètre de Michelson. Il est utilisé industriellement pour le contrôle interférométrique des surfaces optiques non planes ou des objectifs à lentilles ou miroirs.

On considère un interféromètre de Michelson comportant un miroir non parfaitement plan et assimilé à un miroir convexe (M_1) de rayon de courbure R = 10,0 m.

L'image (M_1) de ce miroir par la séparatrice est tangente au miroir plan (M_2) .

L'interféromètre est éclairé en incidence normale par une source étendue monochromatique de longueur d'onde $\lambda = 630$ nm.

On observe la figure d'interférence dans le plan conjugué de (M_2) par la lentille (L) où le grandissement transversal est $\gamma = 5$.



- a-Obtient-on des franges d'égale épaisseur ou d'égale inclinaison ? Quelle forme ont-elles ?
- b-Montrer que la différence de marche en un point M à la distance r de l'axe est $\delta = r^2/R$.
- c-Déterminer les rayons des franges brillantes successives observées sur l'écran.
- d-Si les miroirs ont un diamètre de 2 cm, quelle est la valeur maximale du rayon de courbure que l'on peut détecter ?

1.4.2 Michelson en coin d'air-Exercice 5

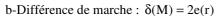
a) En prenant l'image (M'_1) du miroir (M1) par la lame séparatrice, on est ramené au schéma ci-contre.

On peut alors faire une analogie avec un coin d'air.

Il s'agit d'un « coin d'air » à symétrie de révolution autour de l'axe Oy, d'épaisseur locale e(r).

Ce sont des franges d'égale épaisseur localisées sur le coin.

Une frange correspond à r = constante donc ce sont <u>des anneaux</u>.



Soit C le centre du miroir sphérique.

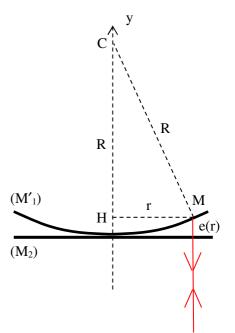
Théorème de Pythagore pour le triangle CHM : $R^2 = r^2 + (R - e(r))^2$

$$=> R^2 = r^2 + R^2 (1 - \frac{e(r)}{R})^2$$

=>
$$R^2 \approx r^2 + R^2 (1 - 2\frac{e(r)}{R})$$
 car $e(r) << R$

$$\Rightarrow$$
 e(r) $\approx \frac{r^2}{2R}$

D'où :
$$\delta(M) = \frac{r^2}{R}$$



c-Pour r = 0: $\delta(M) = 0$ la frange brillante d'ordre 0 est le centre de la figure d'interférences

Pour le premier anneau brillant $\delta(M) = \lambda$, d'où son rayon sur le coin : $r_1 = \sqrt{\lambda R}$

Pour le deuxième anneau brillant $\delta(M) = 2\lambda$, d'où son rayon sur le coin : $r_2 = \sqrt{2\lambda R}$

Pour $k^{i\`{e}me}$ anneau brillant $\delta(M)=k\lambda$, d'où son rayon sur le coin : $r_k=\sqrt{k\lambda R}$

On tient compte du grandissement de la lentille pour avoir les rayons sur l'écran : $r_{k \text{ \'ecran}} = \gamma \sqrt{k \lambda R}$

d-Soit D = 2 cm le diamètre des miroirs, on doit avoir : $r_k \le \frac{D}{2}$

On doit voir au minimum un anneau, donc on prend k = 1: $r_1 \le \frac{D}{2} = \sqrt{\lambda R} \le \frac{D}{2} = R \le R_{max} = \frac{D^2}{4\lambda}$

A.N : $R_{max} = 159 \text{ m}$