Un récipient contient un liquide homogène, de masse volumique p, dans lequel on ajoute des macromolécules insolubles de masse m, de masse volumique $\rho_0 > \rho$ et de masse molaire M.

La solution obtenue est maintenue homogène jusqu'à la date t = 0. A partir de cet instant elle est abandonnée à elle-même et, sous l'action des forces de pesanteur, les macromolécules se déplacent lentement vers le fond du récipient.

Les macromolécules sont soumises à une force de frottement, due à la viscosité η de l'eau, dont l'expression est donnée par la formule de Stokes : $\vec{f} = -6\pi\eta R\vec{v}$ où R est le rayon des macromolécules et \vec{v} leur vitesse.

On note Oz l'axe vertical ascendant avec l'origine au fond du récipient.

- a-Quelles sont les trois forces auxquelles est soumise chaque macromolécule? En déduire l'équation différentielle du mouvement d'une macromolécule et montrer que ces particules atteignent une vitesse limite \vec{v}_{ℓ} .
- b-Cette vitesse limite étant atteinte rapidement, exprimer le vecteur densité de courant de particules j_E associé à ce mouvement d'entraînement, en fonction de la concentration molaire c(z) et de la vitesse limite.
- c-Justifier qu'il existe un courant ascendant j_D de particules. On note D le coefficient de diffusion.
- d-Calculer la concentration molaire c(z) en régime permanent.

e-On donne :
$$\frac{\rho}{\rho_0}$$
 = 0,8 ; g = 9,8 m.s⁻² ; relation d'Einstein D = $\frac{k_B T}{6\pi\eta R}$ où k_B est la constante de Boltzmann.

Des mesures optiques montrent qu'à 25° C : c(z = 0) = 2c(z = 2cm)

En déduire la masse molaire M des macromolécules.

a-Une macromolécule M est soumise à son poids, la poussée d'Archimède et la force de frottement.

Principe fondamental de la dynamique selon Oz :
$$m\dot{v} = -mg + \rho \frac{4}{3}\pi R^3 g - 6\pi\eta Rv$$

Sachant que
$$\frac{4}{3}\pi R^3 g = \frac{m}{\rho_0}$$
, on a : $\dot{v} + \frac{6\pi\eta R}{m} v = g(\frac{\rho}{\rho_0} - 1)$

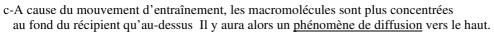
La vitesse limite est atteinte quand
$$\,\dot{v}=0\,:\,v_{\,\ell}=\frac{mg}{6\pi\eta R}\,(\frac{\rho}{\rho_{\,0}}-1)\,<\,0$$

Soit vectoriellement :
$$\boxed{ \vec{v}_{\ell} = \frac{mg}{6\pi\eta R} \, (\frac{\rho}{\rho_0} - 1) \vec{u}_z }$$

b-Le nombre de particules qui traversent la section S de cote z, orientée selon $-\vec{e}_z$

est :
$$dN = N_A c(z).S.(-v_{lim})dt$$

Par définition de
$$\vec{j}_E$$
: $dN = \vec{j}_E.(-S\vec{e}_z)dt = -j_ESdt$
D'où: $j_E = N_A c(z) v_{lim}$ et $\vec{j}_E = N_A c(z) \vec{v}_{lim}$



Loi de Fick :
$$\overrightarrow{j}_D = -\overrightarrow{Dgrad}(N_A c(z)) = -DN_A \frac{dc}{dz} \overrightarrow{e}_z$$

Loi de Fick : $\boxed{\vec{j}_D = -D \overrightarrow{grad}(N_A c(z)) = -DN_A \frac{dc}{dz} \vec{e}_z}$ d- En régime stationnaire, le flux net de particules à travers la section de cote z est nul : $\vec{j}_E + \vec{j}_D = \vec{0}$

$$Selon \ Oz: \ -D \frac{dc}{dz} + cv_{lim} = 0 \qquad soit: \ \frac{dc}{dz} - \frac{v_{lim}}{D} \ c = 0$$

La solution est:
$$c(z) = c(0)e^{-\frac{z}{h}}$$
 avec
$$h = -\frac{D}{v_{lim}} = -\frac{D6\pi\eta R\rho_0}{mg(\rho - \rho_0)} = -\frac{k_B T\rho_0}{\frac{M}{N_A}g(\rho - \rho_0)} = \frac{N_A k_B T}{Mg(1 - \frac{\rho}{\rho_0})}$$

$$e-c(z=0) = 2c(z=2cm) = e^{-\frac{z}{h}} = \frac{1}{2} = h = z/Ln2 = 2,88.10^{-2} \text{ m}$$
 d'où : $M = 4,38.10^{3} \text{ kg.mol}^{-1}$

