CORRIGÉ DU DEVOIR MAISON 3 - COMPLÉMENTS D'ALGÈBRE LINÉAIRE

(Sujet inspiré de Mines PSI 2017)

I.1. Le noyau d'un endomorphisme de E est un sous-espace vectoriel de E donc $(Ker(u^k))_{k\in\mathbb{N}}$ est bien une suite de sous-espaces vectoriels de E.

Soit $k \in \mathbb{N}$.

Soit $x \in \text{Ker}(u^k)$. On a par définition, $u^k(x) = 0_E$ donc $u^{k+1}(x) = u(u^k(x)) = u(0_E) = 0_E$ car u est linéaire. Ainsi, $x \in \text{Ker}(u^{k+1})$.

On a donc montré l'inclusion $Ker(u^k) \subset Ker(u^{k+1})$.

Ainsi:

la suite $\left(\operatorname{Ker}(u^k)\right)_{k\in\mathbb{N}}$ est une suite de sous-espaces vectoriels de E croissante pour l'inclusion.

I.2. L'image d'un endomorphisme de E est un sous-espace vectoriel de E donc $\left(\operatorname{Im}(u^k)\right)_{k\in\mathbb{N}}$ est bien une suite de sous-espaces vectoriels de E.

Soit $k \in \mathbb{N}$.

Soit $y \in \text{Im}(u^{k+1})$. Par définition, il existe $x \in E$ tel que $y = u^{k+1}(x)$ donc $y = u^k(u(x))$. Ainsi, $y \in \text{Im}(u^k)$. On a donc montré l'inclusion $\operatorname{Im}(u^{k+1}) \subset \operatorname{Im}(u^k)$.

Ainsi:

la suite $(\operatorname{Im}(u^k))_{k\in\mathbb{N}}$ est une suite de sous-espaces vectoriels de E décroissante pour l'inclusion.

I.3. On a pour tout $k \in \mathbb{N}$, $\operatorname{Ker}(u^k) \subset \operatorname{Ker}(u^{k+1})$ donc $\dim(\operatorname{Ker}(u^k)) \leq \dim(\operatorname{Ker}(u^{k+1}))$. Ainsi:

la suite d'entiers
$$\left(\dim\left(\operatorname{Ker}(u^k)\right)\right)_{k\in\mathbb{N}}$$
 est croissante.

Notons $n = \dim(E)$. On a pour tout $k \in \mathbb{N}$, $\dim(\operatorname{Ker}(u^k)) \leq n$.

Ainsi, la suite $\left(\dim\left(\operatorname{Ker}(u^k)\right)\right)_{k\in\mathbb{N}}$ est croissante et majorée donc elle converge. De plus, c'est une suite d'entiers donc elle est stationnaire.

En effet, notons ℓ la limite et appliquons la définition de la limite avec $\varepsilon = \frac{1}{3} > 0$.

Il existe un rang $r \in \mathbb{N}^*$ tel que pour tout $k \ge r$, on a $|\dim(\operatorname{Ker}(u^k)) - \ell| \le \frac{1}{2}$.

On a alors par inégalité triangulaire pour tout $k \ge r$:

$$|\dim(\operatorname{Ker}(u^k)) - \dim(\operatorname{Ker}(u^r))| \le |\dim(\operatorname{Ker}(u^k)) - \ell| + |\ell - \dim(\operatorname{Ker}(u^r))| \le \frac{2}{3} < 1.$$

Comme $\dim(\operatorname{Ker}(u^k))$ et $\dim(\operatorname{Ker}(u^r))$ sont des entiers, ils sont nécessairement égaux. Ainsi:

il existe
$$r \in \mathbb{N}^*$$
 tel que pour tout entier $k \ge r$, $\dim(\operatorname{Ker}(u^k)) = \dim(\operatorname{Ker}(u^r))$.

I.4. Soit un entier $k \ge r$. Par la question 1., on a l'inclusion $\operatorname{Ker}(u^r) \subset \operatorname{Ker}(u^k)$ (récurrence immédiate).

Par l'égalité des dimensions, on en déduit l'égalité $Ker(u^k) = Ker(u^r)$.

Par la question 2., on a l'inclusion $\operatorname{Im}(u^k) \subset \operatorname{Im}(u^r)$ (récurrence immédiate).

De plus, on a par le théorème du rang :

$$\dim(\operatorname{Im}(u^k)) = n - \dim(\operatorname{Ker}(u^k)) = n - \dim(\operatorname{Ker}(u^r)) = \dim(\operatorname{Im}(u^r)).$$

On en déduit l'égalité $\text{Im}(u^k) = \text{Im}(u^r)$.

Pour tout
$$k \ge r$$
, on a $\operatorname{Ker}(u^k) = \operatorname{Ker}(u^r)$ et $\operatorname{Im}(u^k) = \operatorname{Im}(u^r)$.

I.5.(a) \blacktriangleright Soit $y \in \text{Ker}(u^r) \cap \text{Im}(u^r)$.

On a $u^r(y) = 0_E$ et il existe $x \in E$ tel que $y = u^r(x)$. Par suite, $u^{2r}(x) = u^r(u^r(x)) = u^r(y) = 0_E$.

Ainsi, $x \in \text{Ker}(u^{2r}) = \text{Ker}(u^r)$ (car $2r \ge r$) donc $u^r(x) = 0_E$ c'est-à-dire $y = 0_E$.

Les sous-espaces $Ker(u^r)$ et $Im(u^r)$ sont donc en somme directe.

▶ On a de plus $\dim(\operatorname{Ker}(u^r)) + \dim(\operatorname{Im}(u^r)) = \dim(E)$ par le théorème du rang.

Ainsi:

$$E = \operatorname{Ker}(u^r) \oplus \operatorname{Im}(u^r).$$

I.5.(b) On a $u^r \circ u = u^{r+1} = u \circ u^r$.

Comme les endomorphismes u^r et u commutent, on en déduit :

$$Ker(u^r)$$
 et $Im(u^r)$ sont stables par u .

I.5.(c) On a pour tout $x \in \text{Ker}(u^r)$, $u_1^r(x) = u^r(x) = 0_E$ donc u_1^r est l'endomorphisme nul. Ainsi :

l'endomorphisme
$$u_1$$
 est nilpotent.

I.5.(d) u_2 est un endomorphisme de $\mathrm{Im}(u^r)$ qui est un espace vectoriel de dimension finie.

Pour montrer que u_2 est un automorphisme, il suffit donc de prouver que u_2 est injectif.

Soit $y \in \text{Ker}(u_2)$. On a $y \in \text{Im}(u^r)$ donc il existe $x \in E$ tel que $y = u^r(x)$.

Comme $u_2(y) = u(y) = 0_E$, on obtient $u^{r+1}(x) = 0_E$ donc $x \in \text{Ker}(u^{r+1}) = \text{Ker}(u^r)$ donc $u^r(x) = 0_E$ d'où $y = 0_E$.

Par suite, $Ker(u_2) = \{0_E\}$ donc u_2 est injectif.

$$u_2$$
 est un automorphisme de $\text{Im}(u^r)$.

II.A.1.(a) Comme $E = F \oplus G$, on a dim(F) + dim(G) = 2.

Raisonnons par l'absurde.

Si on n'a pas $\dim(F) = \dim(G) = 1$ alors $(\dim(F) = 0 \text{ et } \dim(G) = 2)$ ou $(\dim(G) = 0 \text{ et } \dim(F) = 2)$.

Par symétrie des rôles joués par F et G, on peut supposer $\dim(F) = 0$ et $\dim(G) = 2$.

On a alors $F = \{0_E\}$ et G = E. La condition $u(G) \subset F$ donne alors $u(E) \subset \{0_E\}$.

Par suite, u est l'endomorphisme nul de E, ce qui contredit l'énoncé.

Ainsi:

$$\dim(F) = \dim(G) = 1.$$

II.A.1.(b) Soit (e_1,e_2) une base de E adaptée à la décomposition $E=F\oplus G$

 $((e_1)$ est donc une base de F et (e_2) une base de G).

Comme $e_1 \in F$ et $u(F) \subset G$, on a $u(e_1) \in G$ = Vect (e_2) donc il existe $\alpha \in \mathbb{C}$ tel que $u(e_1) = \alpha e_2$.

Comme $e_2 \in G$ et $u(G) \subset F$, on a $u(e_2) \in F = \text{Vect}(e_1)$ donc il existe $\beta \in \mathbb{C}$ tel que $u(e_2) = \beta e_1$.

Ainsi, la matrice de u dans la base (e_1, e_2) est la matrice $A = \begin{pmatrix} 0 & \beta \\ \alpha & 0 \end{pmatrix}$.

On a alors Tr(u) = Tr(A) = 0.

Si u est échangeur alors Tr(u) = 0.

II.A.2.(a)i. Comme la famille $(e_1, u(e_1))$ est liée, les vecteurs e_1 et $u(e_1)$ sont colinéaires.

Comme $e_1 \neq 0_E$ (vecteur d'une base), on en déduit qu'il existe $\alpha \in \mathbb{C}$ tel que $u(e_1) = \alpha e_1$.

De même, il existe $\beta \in \mathbb{C}$ tel que $u(e_2) = \beta e_2$.

La matrice de u dans la base (e_1, e_2) s'écrit donc $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$.

Comme Tr(u) = 0, la trace de cette matrice est nulle d'où $\beta = -\alpha$.

Notons de plus qu'on a $\alpha \neq 0$ car sinon, la matrice serait la matrice nulle et donc u serait l'endomorphisme nul, ce qui n'est pas le cas.

On en déduit que :

la matrice de
$$u$$
 dans la base (e_1, e_2) est de la forme $\begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix}$ avec $\alpha \in \mathbb{C} \setminus \{0\}$.

II.A.2.(a)ii. Par l'absurde : supposons que la famille $(e_3, u(e_3))$ soit liée.

Comme $e_3 \neq 0_E$ (puisque la famille (e_1, e_2) est libre), il existe $\gamma \in \mathbb{C}$ tel que $u(e_3) = \gamma e_3 = \gamma e_1 + \gamma e_2$.

On a par ailleurs $u(e_3) = u(e_1) + u(e_2) = \alpha e_1 - \alpha e_2$.

Comme la famille (e_1, e_2) est libre, on a alors $\alpha = \gamma = -\alpha$ d'où $\alpha = 0$ ce qui est absurde.

On en déduit que :

la famille
$$(e_3, u(e_3))$$
 est libre.

II.A.2(b) Soit (e_1, e_2) une base de E.

D'après la question précédente, soit la famille $(e_1, u(e_1))$ est libre, soit la famille $(e_2, u(e_2))$ est libre, soit elles sont toutes deux liées et dans ce cas, la famille $(e_3, u(e_3))$ est libre.

On en déduit que dans tous les cas, il existe $x_0 \in E$ tel que la famille $(x_0, u(x_0))$ soit libre.

Comme il s'agit d'une famille de E de cardinal $2 = \dim(E)$, on en déduit que $(x_0, u(x_0))$ est une base de E.

Il existe
$$x_0 \in E$$
 tel que la famille $(x_0, u(x_0))$ soit une base de E .

II.A.2.(c) Soit $(\alpha, \beta) \in \mathbb{C}^2$ tel que $u(u(x_0)) = \alpha x_0 + \beta u(x_0)$.

La matrice de u dans la base $(x_0, u(x_0))$ est donc la matrice $M = \begin{pmatrix} 0 & \alpha \\ 1 & \beta \end{pmatrix}$.

Comme
$$\operatorname{Tr}(M) = \operatorname{Tr}(u) = 0$$
, on a $\beta = 0$ d'où $M = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}$.

Notons $F = \text{Vect}(x_0)$ et $G = \text{Vect}(u(x_0))$.

Comme $(x_0, u(x_0))$ est une base de E, on a $E = F \oplus G$.

De plus, pour tout $a \in \mathbb{C}$, on a $u(ax_0) = au(x_0) \in G$ donc $u(F) \subset G$

et pour tout $a \in \mathbb{C}$, on a $u(au(x_0)) = au^2(x_0) = a\alpha x_0 \in F$ donc $u(G) \subset F$.

On a donc montré que u est échangeur.

Si
$$Tr(u) = 0$$
 alors u est échangeur.

II.A.3. Pour u endomorphisme non nul de E où dim(E) = 2, on a montré l'équivalence :

u est échangeur si et seulement si Tr(u) = 0.

Si u est l'endomorphisme nul alors u est échangeur (tous sous-espaces F et G supplémentaires dans E conviennent car $u(F) = u(G) = \{0_E\}$) et Tr(u) = 0.

Ainsi:

si E est de dimension 2, u est échangeur si et seulement si Tr(u) = 0.

II.B.1. Un calcul par blocs (possible vu les tailles des matrices) donne :

$$\begin{pmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{pmatrix} \begin{pmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{pmatrix} = \begin{pmatrix} 0_n & 0_{n,p} \\ 0_{p,n} & 0_p \end{pmatrix} = 0_{n+p}.$$

On a:

$$M = \begin{pmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{pmatrix} + \begin{pmatrix} 0_n & 0_{n,p} \\ A & 0_p \end{pmatrix}$$

et on a $\begin{pmatrix} 0_n & B \\ 0_{p,n} & 0_p \end{pmatrix}^2 = 0_{n+p}$ et $\begin{pmatrix} 0_n & 0_{n,p} \\ A & 0_p \end{pmatrix}^2 = 0_{n+p}$ par un calcul similaire.

$$M = \begin{pmatrix} 0_n & B \\ A & 0_p \end{pmatrix}$$
 est la somme de deux matrices de carré nul.

II.B.2. On note $n = \dim(F)$ et $p = \dim(G)$ (on a donc $\dim(E) = n + p$).

Soit $\mathscr{B} = (f_1, \ldots, f_n, g_1, \ldots, g_p)$ une base de E adaptée à la décomposition $E = F \oplus G$ $((f_1, \ldots, f_n)$ est donc une base de F et (g_1, \ldots, g_p) une base de G).

Soit $k \in [1, n]$. On a $f_k \in F$ et $u(F) \subset G$ donc $u(f_k) \in G = \text{Vect}(g_1, \dots, g_p)$.

Par suite, les n premières coordonnées de $u(f_k)$ dans la base \mathcal{B} sont nulles.

Soit $k \in [1, p]$. On a $g_k \in G$ et $u(G) \subset F$ donc $u(g_k) \in F = \text{Vect}(f_1, \dots, f_n)$.

Par suite, les p dernières coordonnées de $u(g_k)$ dans la base \mathscr{B} sont nulles.

On en déduit :

la matrice de
$$u$$
 dans la base \mathscr{B} est de la forme $M = \begin{pmatrix} 0_n & B \\ A & 0_p \end{pmatrix}$

II.B.3. Si F et G sont tous deux non nuls alors d'après ce qui précède, la matrice de u dans la base \mathscr{B} est de la forme $M = \begin{pmatrix} 0_n & B \\ A & 0_p \end{pmatrix}$ et M s'écrit $M = M_1 + M_2$ où M_1 et M_2 sont deux matrices de carré nul.

Soit a (respectivement b) l'endomorphisme de E qui a pour matrice M_1 (resp. M_2) dans la base \mathcal{B} . On a alors u = a + b et a et b sont deux endomorphismes de carré nul. Ainsi, u vérifie (C2).

Si $F = \{0_E\}$ alors G = E. La condition $u(G) \subset F$ donne $u(E) \subset \{0_E\}$.

Ainsi, u est l'endomorphisme nul donc en posant a et b égaux à l'endomorphisme nul, on a u = a + b avec a et b de carré nul. Donc u vérifie (C2).

Par symétrie des rôles joués par F et G, si $G = \{0_E\}$ alors u vérifie également (C2). On a donc prouvé :

II.C.1. Soit $y \in \text{Im}(f)$. Il existe $x \in E$ tel que y = f(x).

On a alors $f(y) = f^2(x) = 0$ puisque f^2 est l'endomorphisme nul. Donc $y \in \text{Ker}(f)$.

Ainsi, $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$. Par suite, $\dim(\operatorname{Im}(f)) \leq \dim(\operatorname{Ker}(f))$.

Or, par le théorème du rang, on a $\dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)) = \dim(E)$.

On en déduit $\dim(E) \leq 2\dim(\operatorname{Ker}(f))$.

Ainsi:

si
$$f$$
 est un endomorphisme de E de carré nul alors $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$ et $\dim(\operatorname{Ker}(f)) \geqslant \frac{1}{2}\dim(E)$.

II.C.2. \blacktriangleright Soit $x \in \text{Ker}(a) \cap \text{Ker}(b)$.

On a $a(x) = b(x) = 0_E$ donc $u(x) = 0_E$. Ainsi, $x \in \text{Ker}(u)$.

Comme u est un automorphisme, on a $Ker(u) = \{0_E\}$ d'où $x = 0_E$.

Ainsi, $Ker(a) \cap Ker(b) = \{0_E\}$. Les espaces Ker(a) et Ker(b) sont donc en somme directe.

▶ Comme $a^2 = 0$, on a d'après la question précédente, $\dim(\operatorname{Ker}(a)) \ge \frac{1}{2}\dim(E)$.

De même, $\dim(\operatorname{Ker}(b)) \ge \frac{1}{2}\dim(E)$.

On en déduit $\dim(\operatorname{Ker}(a)) + \dim(\operatorname{Ker}(b)) \ge \dim(E)$.

Comme par ailleurs, $\dim(\operatorname{Ker}(a)) + \dim(\operatorname{Ker}(b)) = \dim(\operatorname{Ker}(a) \oplus \operatorname{Ker}(b)) \leq \dim(E)$, on en déduit :

$$\dim(\operatorname{Ker}(a)) + \dim(\operatorname{Ker}(b)) = \dim(E).$$

Ainsi:

$$E = \operatorname{Ker}(a) \oplus \operatorname{Ker}(b).$$

On a établi:

$$\dim\bigl(\operatorname{Ker}(a)\bigr) + \dim\bigl(\operatorname{Ker}(b)\bigr) = \dim(E) \text{ avec } \dim\bigl(\operatorname{Ker}(a)\bigr) \geqslant \frac{1}{2}\dim(E) \text{ et } \dim\bigl(\operatorname{Ker}(b)\bigr) \geqslant \frac{1}{2}\dim(E).$$

On a donc nécessairement $\dim(\operatorname{Ker}(a)) = \dim(\operatorname{Ker}(b)) = \frac{1}{2}\dim(E)$.

Comme $a^2 = 0$, on a d'après la question précédente, $\text{Im}(a) \subset \text{Ker}(a)$.

Par le théorème du rang et puisque $E = \text{Ker}(a) \oplus \text{Ker}(b)$, on a :

$$\dim(\operatorname{Im}(a)) = \dim(E) - \dim(\operatorname{Ker}(a)) = \dim(\operatorname{Ker}(b)) = \dim(\operatorname{Ker}(a)).$$

Ainsi, Im(a) = Ker(a).

Comme a et b jouent des rôles symétriques, on a également Im(b) = Ker(b).

Ainsi:

on a
$$Ker(a) = Im(a)$$
 et $Ker(b) = Im(b)$.

II.C.3. Soit $x \in \text{Ker}(a)$. On a u(x) = a(x) + b(x) = b(x) donc $u(x) \in \text{Im}(b)$.

Ainsi, $u(\operatorname{Ker}(a)) \subset \operatorname{Im}(b) = \operatorname{Ker}(b)$.

Comme a et b jouent des rôles symétriques, on a également $u(\operatorname{Ker}(b)) \subset \operatorname{Im}(a) = \operatorname{Ker}(a)$.

On a donc établi:

$$E = \operatorname{Ker}(a) \oplus \operatorname{Ker}(b)$$
 avec $u(\operatorname{Ker}(a)) \subset \operatorname{Ker}(b)$, $u(\operatorname{Ker}(b)) \subset \operatorname{Ker}(a)$.

Ainsi, u est échangeur.

Pour un automorphisme, la condition
$$(C2)$$
 implique la condition $(C1)$.

II.D.1. On a $u^2 = (a + b) \circ (a + b) = a^2 + a \circ b + b \circ a + b^2 = a \circ b + b \circ a$.

On a donc:

$$a \circ u^2 = a \circ (a \circ b + b \circ a) = a^2 \circ b + a \circ b \circ a = a \circ b \circ a$$

et:

$$u^2 \circ a = (a \circ b + b \circ a) \circ a = a \circ b \circ a + b \circ a^2 = a \circ b \circ a.$$

Ainsi, $a \circ u^2 = u^2 \circ a$.

Comme a et b jouent des rôles symétriques, on a également $b \circ u^2 = u^2 \circ b$.

Ainsi:

a et b commutent avec u^2 .

II.D.2. Montrons par récurrence que pour tout $k \in \mathbb{N}^*$, a commute avec u^{2k} .

Initialisation : a commute avec u^2 d'après ce qui précède.

 $H\acute{e}r\acute{e}dit\acute{e}:$ Soit $k\in\mathbb{N}^*.$ On suppose que a commute avec $u^{2k}.$ Montrons que a commute avec $a^{2k+2}.$

On a alors:

$$a \circ u^{2k+2} = a \circ u^2 \circ u^{2k} = u^2 \circ a \circ u^{2k} = u^2 \circ u^{2k} \circ a = u^{2k+2} \circ a.$$

Ainsi, pour tout $k \in \mathbb{N}^*$, a commute avec u^{2k} .

Comme p est pair et non nul, on en déduit que a commute avec u^p .

Par le cours, on en déduit que $G = \text{Im}(u^p)$ est stable par a.

On a pour tout $x \in G$, $(a_G)^2(x) = a_G(a(x)) = a(a(x)) = a^2(x) = 0_G$.

Ainsi, l'endomorphisme a_G est de carré nul.

Comme a et b jouent des rôles symétriques, on a également G stable par b et b_G de carré nul.

 $G = \operatorname{Im}(u^p)$ est stable par a et b et les endomorphismes a_G et b_G sont de carré nul.

II.D.3. Considérons l'entier r défini dans la Partie I pour l'endomorphisme u.

Si r est un entier pair, on pose p = r et si r est un entier impair, on pose p = r + 1.

Ainsi, p est un entier pair et on note $G = \text{Im}(u^p)$ et $F = \text{Ker}(u^p)$.

On a établi dans la partie I les résultats suivants :

- $\star G = \operatorname{Im}(u^r) \text{ et } F = \operatorname{Ker}(u^r),$
- $\star E = F \oplus G$
- \star l'endomorphisme induit par u sur F est nilpotent,
- \star l'endomorphisme induit par u sur G est un automorphisme.

Comme u_F est un endomorphisme nilpotent d'un espace vectoriel de dimension finie, d'après le théorème admis, u_F est échangeur.

Ainsi, il existe F_1 et F_2 deux sous-espaces vectoriels de F tels que $F = F_1 \oplus F_2$, $u(F_1) \subset F_2$ et $u(F_2) \subset F_1$. Comme u_G est un automorphisme de G (de dimension finie) vérifiant $u_G = a_G + b_G$ avec a_G et b_G de carré nul, on en déduit par la partie II.C. que u_G est échangeur.

Ainsi, il existe G_1 et G_2 deux sous-espaces vectoriels de G tels que $G = G_1 \oplus G_2$, $u(G_1) \subset G_2$ avec $u(G_2) \subset G_1$. On a ainsi:

$$E = (F_1 \oplus F_2) \oplus (G_1 \oplus G_2) = (F_1 \oplus G_1) \oplus (F_2 \oplus G_2) \text{ et } u(F_1 \oplus G_1) \subset F_2 \oplus G_2, \ u(F_2 \oplus G_2) \subset F_1 \oplus G_1.$$

En effet, si $x \in F_1$ et $y \in G_1$ alors u(x+y) = u(x) + u(y) avec $u(x) \in u(F_1) \subset F_2$ et $u(y) \in u(G_1) \subset G_2$ donc $u(x+y) \in F_2 \oplus G_2$, d'où $u(F_1 \oplus G_1) \subset F_2 \oplus G_2$. De même pour $u(F_2 \oplus G_2) \subset F_1 \oplus G_1$.

On a donc montré que u est échangeur.

On a donc montré :

la condition (C2) implique la condition (C1).

Ainsi:

les conditions (C1) et (C2) sont équivalentes.