DM4 (SUITES ET SÉRIES DE FONCTIONS) Pour le 6 novembre

Dans toute la suite, $\sum f_n$ est une série de fonctions définies sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} .

Dans ce sujet exclusivement, on dira que la série de fonctions $\sum f_n$ converge absolument sur I lorsque pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge absolument.

Le but de ce problème est de comparer les différents modes de convergence d'une série de fonctions : convergence simple, convergence uniforme, convergence normale et convergence absolue.

- 1. Pour chaque couple d'assertions ci-dessous, préciser l'implication logique donnée par le cours en indiquant \Leftarrow ou \Rightarrow entre les deux :
 - (a) $\left[\sum f_n \text{ converge uniformément sur } I\right] \dots \left[\sum f_n \text{ converge normalement sur } I\right]$
 - (b) $\left[\sum f_n \text{ converge uniformément sur } I\right] \dots \left[\sum f_n \text{ converge simplement sur } I\right]$
 - (c) $\left[\sum f_n \text{ converge absolument sur } I\right] \dots \left[\sum f_n \text{ converge normalement sur } I\right]$
 - (d) $\left[\sum f_n \text{ converge absolument sur } I\right] \dots \left[\sum f_n \text{ converge simplement sur } I\right]$
- 2. Étudier chacun des quatre modes de convergence pour la série de fonctions $\sum f_n$ sur I dans les deux cas suivants :
 - (a) $I = \mathbb{R}$ et pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $f_n(x) = \frac{\cos(nx)}{2^n} + \frac{\sin(nx)}{3^n}$.
 - (b) $I = \mathbb{R}$ et pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $f_n(x) = \frac{\cos(nx)}{n+1}$.
- **3.** Dans cette question, on pose pour $n \in \mathbb{N}^*$ et $x \in [0,1]$, $f_n(x) = (-1)^n \left(\frac{x^2 + n}{n^2}\right)$.
 - (a) Montrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge simplement sur [0,1].
 - (b) Montrer que la série $\sum_{n\geq 1} f_n(x)$ ne converge absolument en aucune valeur x de [0,1].
 - (c) Montrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge uniformément sur [0,1].
- **4.** Dans cette question, on pose pour $n \in \mathbb{N}$ et $x \in]-1,1[, f_n(x) = x^n]$.
 - (a) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur] 1, 1[.
 - (b) Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur] 1, 1[.
 - (c) Montrer que la série de fonctions $\sum f_n$ converge absolument sur] 1,1[.

Dans les questions 5. à 8., $(\alpha_n)_{n\geqslant 1}$ désigne une suite décroissante de réels positifs, I=[0,1[et on a pour tout $n\in\mathbb{N}^*$ et tout $x\in I$:

$$f_n(x) = \alpha_n x^n (1 - x).$$

- 5. Justifier que la suite $(\alpha_n)_{n\geqslant 1}$ est bornée et montrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge simplement sur I.
- **6.** (a) Pour $n \in \mathbb{N}^*$, montrer que $\sup_{x \in I} |f_n(x)| = \alpha_n \frac{n^n}{(n+1)^{n+1}}$.
 - (b) Démontrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge normalement sur I si et seulement si la série de réels positifs $\sum_{n\geqslant 1} \frac{\alpha_n}{n}$ converge.
- **7.** (a) Pour $n \in \mathbb{N}^*$ et $x \in I$, calculer $\sum_{k=n+1}^{+\infty} x^k$.
 - (b) Montrer que si la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0 alors la série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur I. On pourra observer que pour tout $k\geqslant n+1$, on a $\alpha_k\leqslant \alpha_{n+1}$.
 - (c) Réciproquement, démontrer que si la série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur I alors la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0.
- 8. Dans chacun des cas suivants, donner en détaillant, un exemple de suite décroissante de réels positifs $(\alpha_n)_{n\geqslant 1}$ telle que :
 - (a) La série de fonctions $\sum_{n\geq 1} f_n$ converge normalement sur I.
 - (b) La série de fonctions $\sum_{n\geqslant 1} f_n$ ne converge pas uniformément sur I.
 - (c) La série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur I mais ne converge pas normalement sur I.
- 9. Montrer à l'aide de contre-exemples que les implications réciproques des implications établies à la question 1. sont fausses.
- 10. Existe-t-il des implications logiques entre les assertions $[\sum f_n$ converge uniformément sur I] et $[\sum f_n$ converge absolument sur I]? Prouver vos affirmations.