Algèbre Chapitre 5 : Calcul matriciel Feuille d'exercices

PCSI2 - MATHÉMATIQUES 2022-2023

\bigwedge Exercice 1:

Soient les matrices:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 1 \\ -3 & -1 & 2 \\ 5 & 2 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ et } E = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$

Calculez lorsque c'est possible les expressions suivantes

$$A^{2}$$
, AB , BA , AE , EA , ED , DE , BD , CD , $A(BC)D$, $(-A + 2E)B$

Exercice 2 :

On pose
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$; $C = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$; $D = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -3 & 1 \end{pmatrix}$

Exercice 3:

Trouvez toutes les matrices $X \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec la matrice $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$.

Exercice 4:

Soit la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$.

ightharpoons Exercice 5:

Soit A et $B \in \mathcal{M}_n(\mathbb{K})$ telles que A et B sont triangulaires supérieures.

- 1. Montrez que A + B et AB sont également triangulaires supérieures.
- 2. Sans refaire les calculs, montrez que si A et B sont triangulaires inférieures, A + B et AB sont également triangulaires inférieures.

Exercice 6:

Soient les matrices
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

- 1. Calculer B^n pour $n \in \mathbb{N}$.
- 2. En utilisant B, calculer A^n pour $n \in \mathbb{N}$.
- 3. Calculer C^n avec $C = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$

Exercice 7:

Soit $n \in \mathbb{N}^*$. Calculez la puissance n-ème de la matrice $A = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix}$ et en déduire la puissance n-ème de la matrice $B = \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}$.

Exercice 8:

Soit la matrice $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

1. Montrez qu'il existe une suite $(u_n)_{n\geq 0}$ telle que pour tout entier $n\geq 1$:

$$A^n = \left(\begin{array}{cc} u_{n-1} & u_n \\ u_n & u_{n+1} \end{array}\right)$$

On précisera la relation liant pour tout $n \in \mathbb{N}$, u_{n+2} , u_{n+1} et u_n .

2. A partir du calcul de A^{2n} , déterminez une relation entre u_{2n} , u_{n-1} , u_n et u_{n+1} .

Exercice 9:

On considère les matrices suivantes :

$$A = \begin{pmatrix} 2 & 0 & -1 \\ -4 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 & 0 \\ -2 & -2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ et } S = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

- 1. Calculez PS et SP. En déduire que P est inversible, d'inverse $P^{-1} = S$.
- 2. Calculez $D = P^{-1}AP$.
- 3. Pour tout $n \in \mathbb{N}$, calculez D^n .
- 4. Montrez que pour tout n, on a la formule

$$A^n = PD^nP^{-1}$$

5. En déduire A^n .

I

Exercice 10:

Soit
$$M = \begin{pmatrix} 1 & -3 & -3 \\ -3 & 1 & 3 \\ 3 & -3 & -5 \end{pmatrix}$$

- 1. Calculez $M^2 + M 2I_3$.
- 2. En déduire que M est inversible et préciser son inverse.

♣

Exercice 11:

Soit

$$A = \left(\begin{array}{ccc} 2 & -1 & 2\\ 5 & -3 & 3\\ -1 & 0 & -2 \end{array}\right)$$

- 1. Calculer $(A + I_3)^3$.
- 2. En déduire A^{-1} .

Exercice 12:

Soit A et B deux matrices symétriques. AB est-elle nécessairement symétrique? Donnez une condition nécessaire et suffisante pour qu'elle le soit.

Exercice 13:

Pour toute matrice carrée M, on appelle trace de M et on note $\mathrm{tr}(M)$ la somme des coefficients diagonaux de M

Dans tout l'exercice, n et p désigne des entiers naturel non nul.

- 1. Pour $M = (m_{i,j})_{1 \le i,j \le n}$, exprimer tr(M) à l'aide d'un signe somme.
- 2. Soit $A = (a_{i,j})$ et $B = (b_{i,j})$ deux matrices de $\mathcal{M}_n(\mathbb{K})$. Montrer que :

$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$
 et $\forall \lambda \in \mathbb{K}, \operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$.

3. Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. Montrer que : $\operatorname{tr}(A \times B) = \operatorname{tr}(B \times A)$. En déduire que si $P \in \mathcal{M}_n(\mathbb{K})$ est une matrice inversible, alors pour tout $A \in \mathcal{M}_n(\mathbb{K})$,

$$\operatorname{tr}(P^{-1}AP) = \operatorname{tr}(A)$$

- 4. A-t-on $tr(A \times B) = tr(A) \times tr(B)$ pour tout couple de matrices carrées (A, B)?
- 5. Peut-on trouver des matrices A et B dans $\mathcal{M}_n(\mathbb{K})$ telles que $AB BA = I_n$? Si oui, les préciser.

6. Soit
$$A = \begin{pmatrix} 1 & 1 & 2 \\ -2 & 3 & -1 \\ -1 & -2 & -2 \end{pmatrix}$$
 et $B = \begin{pmatrix} -5 & 0 & 2 \\ 2 & 1 & 5 \\ 1 & 2 & 3 \end{pmatrix}$.

Existe-t-il une matrice P inversible telle que $B = P^{-1}AP$?

7. Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$ telles que

$$A \times B = I_n \text{ et } B \times A = I_n.$$

Montrer les matrices A et B sont carrées (i.e. n = p).