Chapitre 6 : Nombres complexes - Partie 2 Feuille d'exercices

PCS12 - Mathématiques 2023-2024

Exercice 1:

Ecrire les nombres complexes suivants sous forme exponentielle :

$$x = 2 - 2i y = 1 + i\sqrt{3} z = 3 + i\sqrt{3} t = -1 + i\sqrt{3}$$
$$u = \left(-1 + i\frac{1}{\sqrt{3}}\right)^{6} v = (\cos(\alpha) - i\sin(\alpha))^{5} w = \frac{1+i}{1-i} \lambda = \frac{1+i\sqrt{3}}{\sqrt{3}-i}$$

\triangle Exercice 2:

Donner une forme exponentielle des complexes suivants (θ est un réel):

$$z = 4\left(\sin\left(\frac{\pi}{12}\right) + i\cos\left(\frac{\pi}{12}\right)\right).$$

$$u = 1 + e^{4i\theta}$$

$$v = (1 + i\tan(\theta))^{2}$$

$$a = \frac{(1 + i\sqrt{3})(\sin\theta + i\cos\theta)}{2(1 - i)(\cos\theta - i\sin\theta)}$$

$$b = \frac{(\sqrt{6} - i\sqrt{2})(1 + i)}{1 - i}$$

$$c = \frac{9\sqrt{3} + 3i}{2 + i\sqrt{3}}$$

Exercice 3 :

Soit
$$j = \frac{-1 + i\sqrt{3}}{2}$$
.

- 1. Ecrire j sous forme exponentielle. Montrez que $\bar{j} = j^2$.
- 2. Résoudre l'équation $z^3 = 1$
- 3. Déterminez les solutions de l'équation $z^6 + 7z^3 8 = 0$

Exercice 4:

Soit x = 1 + i et $y = \sqrt{3} - i$. Déterminer la forme trigonométrique de x et y, puis celle de xy. En déduire les valeurs exactes de $\cos(\pi/12)$ et $\sin(\pi/12)$.

≜Exercice 5 :

- 1. Soit $t \in \mathbb{R}$. Résoudre pour $z \in \mathbb{C}$ l'équation $(E_t): z^2 2tz + 1 = 0$.
- 2. Soit \mathcal{P} le plan complexe. Déterminer l'ensemble des points M_t d'affixe z tel que z est solution de E_t lorsque t décrit \mathbb{R} .

▲Exercice 6:

Ecrire sous forme algébrique le complexe $(1 - i\sqrt{3})^{10}$.

\triangle Exercice 7:

- 1. Ecrire les expressions suivantes en fonction de $\cos(t)$ et $\sin(t)$ (pour $t \in \mathbb{R}$):
 - (a) $\sin(4t)$ (b) $\cos(5t)$
- 2. Ecrire les expressions suivantes en fonction de combinaison linéaires de $\cos(kx)$ et $\sin(kx)$ (pour $x \in \mathbb{R}$):

(a)
$$\cos^3(x)$$
 (b) $\cos^4(x)\sin(x)$

≜Exercice 8 :

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. En considérant $C_n + iS_n$, déterminez les valeurs de C_n et S_n définis par :

$$C_n = \sum_{k=0}^n \binom{n}{k} \cos(k\theta)$$
 et $S_n = \sum_{k=0}^n \binom{n}{k} \sin(k\theta)$

Exercice 9 :

Résoudre l'équation d'inconnue $z \in \mathbb{C}$,

$$z^5 = \frac{1+i}{1-i}.$$

Exercice 10 :

Résoudre l'équation d'inconnue $z \in \mathbb{C}$, $e^z = 1 + i$.

▲Exercice 11 :

Résoudre l'équation d'inconnue $z \in \mathbb{C}$, $(z+1)^2 = i + \sqrt{3}$.

Exercice 12:

On considère trois points du plan A, B et C, et on note a, b et c les affixes complexes correspondantes.

- 1. Interpréter géométriquement l'égalité (|a-b|-|a-c|) (|b-a|-|b-c|) (|c-a|-|c-b|)=0. A quelle condition sur A, B et C est elle vérifiée?
- 2. Interpréter géométriquement l'égalité $(|a-b|-|a-c|)^2+(|b-a|-|b-c|)^2=0$. A quelle condition sur A, B et C est elle vérifiée?

♠Exercice 13:

A quelle condition sur z les points d'affixe 0, z et z^3 sont-il alignés ?

≜Exercice 14:

Résoudre les équations suivantes géométriquement

- 1. |z+i|=3.
- 2. |z-1| = |z-i|.
- 3. $|z| = \left| \frac{1}{z} \right| = |1 z|$.

▲Exercice 15 :

Déterminer l'ensemble des points M d'affixe z tels que le triangle ayant pour sommets les points d'affixe z, z^2 et z+i est rectangle en M.