Analogie électricité-mécanique				
Grandeur	Électricité	Mécanique		
Position	q	\overline{x}		
Rappel	1/C	k		
Effort = rappel \times pos.	$u_C = q/C$	F = kx		
$E \text{ pot.} = \frac{1}{2} \text{rappel} \times \text{pos.}^2$	$E_C = \frac{1}{2C}q^2$	$E_{\rm p} = \frac{1}{2}kx^2$		
Déplacement	$i = \frac{\mathrm{d}q}{\mathrm{d}t}$	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$		
Inertie	L	m		
$E \text{ dépl.} = \frac{1}{2} \text{inertie} \times \text{dépl.}^2$	$E_L = \frac{1}{2}Li^2$	$E_{\rm c} = \frac{1}{2}mv^2$		
Pulsation = $\sqrt{\text{rappel/inertie}}$	$\sqrt{1/(LC)}$	$\sqrt{k/m}$		
Résistance au dépl.	Résistance R	Frottements α		
Puiss. effort = effort \times dépl.	ui	Fv		
Puiss. dissip. = Rés.dépl. \times dépl. ²	Ri^2	αv^2		

Analogie électricité-mécanique			
Grandeur	Électricité	Mécanique	
Position	q	x	
Rappel	1/C	k	
Effort = rappel \times pos.	$u_C = q/C$	F = kx	
$E \text{ pot.} = \frac{1}{2} \text{rappel} \times \text{pos.}^2$	$E_C = \frac{1}{2C}q^2$	$E_{\rm p} = \frac{1}{2}kx^2$	
Déplacement	$i = \frac{\mathrm{d}q}{\mathrm{d}t}$	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$	
Inertie	L	m	
$E \text{ dépl.} = \frac{1}{2} \text{inertie} \times \text{dépl.}^2$	$E_L = \frac{1}{2}Li^2$	$E_{\rm c} = \frac{1}{2}mv^2$	
Pulsation = $\sqrt{\text{rappel/inertie}}$	$\sqrt{1/(LC)}$	$\sqrt{k/m}$	
Résistance au dépl.	Résistance R	Frottements α	
Puiss. effort = effort \times dépl.	ui	Fv	
Puiss. dissip. = Rés.dépl. \times dépl. ²	Ri^2	αv^2	

_	Analogie électricité-mécanique			
(Grandeur	Électricité	Mécanique	
	Position	q	x	
I	Rappel	1/C	k	
I	$Effort = rappel \times pos.$	$u_C = q/C$	F = kx	
_1	$E \text{ pot.} = \frac{1}{2} \text{rappel} \times \text{pos.}^2$	$E_C = \frac{1}{2C}q^2$	$E_{\rm p} = \frac{1}{2}kx^2$	
I	Déplacement	$i = \frac{\mathrm{d}q}{\mathrm{d}t}$	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$	
I	Inertie	L	m	
1	$E ext{ dépl.} = \frac{1}{2} inertie \times dépl.^2$	$E_L = \frac{1}{2}Li^2$	$E_{\rm c} = \frac{1}{2}mv^2$	
I	$Pulsation = \sqrt{rappel/inertie}$	$\sqrt{1/(LC)}$	$\sqrt{k/m}$	
I	Résistance au dépl.	Résistance R	Frottements α	
F	Puiss. effort = effort \times dépl.	ui	Fv	
I	Puiss. dissip. = Rés. dépl. \times dépl. 2	Ri^2	αv^2	