DEVOIR SURVEILLÉ 3 – Sujet CCINP

29/11/23

Durée 4h

Exercice 1 - Résolution d'une équation fonctionnelle

Dans cet exercice, on souhaite déterminer les fonctions $f:]0, +\infty[\to \mathbb{R}$ vérifiant les relations :

$$\lim_{x \to +\infty} f(x) = 0 \quad \text{et} \quad \forall x \in]0, +\infty[, \ f(x+1) + f(x) = \frac{1}{x^2}. \tag{P}$$

Partie I - Existence et unicité de la solution du problème (P)

Dans cette partie, on démontre que le problème (P) admet une unique solution et on détermine une expression de celle-ci sous la forme d'une série de fonctions.

A. - Existence de la solution

Pour tout $k \in \mathbb{N}$, on définit la fonction $\varphi_k :]0, +\infty[\to \mathbb{R} \text{ par } :$

$$\forall x \in]0, +\infty[, \varphi_k(x) = \frac{(-1)^k}{(x+k)^2}.$$

Q1. Montrer que la série de fonctions $\sum_{k\geqslant 0} \varphi_k$ converge simplement sur $]0,+\infty[$.

Dans tout le reste de cet exercice, on note $\varphi:]0, +\infty[\to \mathbb{R}$ la somme de la série $\sum_{k \geqslant 0} \varphi_k$.

- **Q2.** Montrer que pour tout $x \in]0, +\infty[$, on a $\varphi(x+1) + \varphi(x) = \frac{1}{x^2}$.
- Q3. En utilisant le théorème spécial des séries alternées, montrer que :

$$\forall x \in]0, +\infty[, \forall n \in \mathbb{N}, \left| \sum_{k=n+1}^{+\infty} \varphi_k(x) \right| \leq \frac{1}{(x+n+1)^2}.$$

- **Q4.** En déduire que la série $\sum_{k\geqslant 0}\varphi_k$ converge uniformément sur $]0,+\infty[$.
- **Q5.** Montrer que la fonction φ est une solution de (P).

B. - Unicité de la solution

Q6. Montrer que si $f:]0, +\infty[\to \mathbb{R}$ est une solution de (P) alors pour tout $n \in \mathbb{N}$, on a :

$$\forall x \in]0, +\infty[, f(x) = (-1)^{n+1} f(x+n+1) + \sum_{k=0}^{n} \frac{(-1)^k}{(x+k)^2}.$$

Q7. En déduire que la fonction φ est l'unique solution de (P).

Partie II - Étude de la solution du problème (P)

Dans cette partie, on étudie quelques propriétés de l'unique solution $\varphi:]0, +\infty[\to \mathbb{R}$ du problème (P).

- **Q8.** Montrer que la fonction φ est continue sur $]0, +\infty[$.
- **Q9.** En utilisant le fait que φ est une solution du problème (P), en déduire un équivalent simple de φ au voisinage de 0^+ .
- **Q10.** Soit $\varepsilon > 0$. Montrer que la série de fonctions $\sum_{k \ge 0} \varphi'_k$ converge normalement sur $[\varepsilon, +\infty[$.
- **Q11.** Montrer que la fonction φ est dérivable sur $]0, +\infty[$ et que l'on a :

$$\forall x \in]0, +\infty[, \varphi'(x)] = \sum_{k=0}^{+\infty} \frac{2(-1)^{k+1}}{(x+k)^3}.$$

- **Q12.** En déduire que la fonction φ est décroissante sur $]0,+\infty[$.
- Q13. En utilisant le résultat de la question précédente et la relation (P), montrer que :

$$\forall x \in]1, +\infty[, \frac{1}{x^2} \leqslant 2\varphi(x) \leqslant \frac{1}{(x-1)^2}.$$

En déduire un équivalent de φ en $+\infty$.

Exercice 2 : Approximation de la racine carrée d'un réel positif par la méthode de Héron

On considère la suite de fonctions $(f_k)_{k\in\mathbb{N}}$ définie par :

$$f_0: \mathbb{R}_+ \to \mathbb{R} \text{ et } \forall x \in \mathbb{R}_+, f_0(x) = 1$$

et la relation de récurrence :

$$\forall k \in \mathbb{N}^*, \quad f_k : \mathbb{R}_+ \to \mathbb{R} \text{ et } \forall x \in \mathbb{R}_+, f_k(x) = \frac{1}{2} \left(f_{k-1}(x) + \frac{x}{f_{k-1}(x)} \right).$$

On admet que la suite $(f_k)_{k\in\mathbb{N}}$ est correctement définie par les relations ci-dessus. Dans la suite, on pourra utiliser sans la démontrer l'inégalité :

$$\forall k \in \mathbb{N}, \ \forall x \in \mathbb{R}_+, \ f_k(x) > 0.$$

Partie I - Convergence de la suite $(f_k)_{k\in\mathbb{N}}$

- **Q14.** Soit $x \in \mathbb{R}_+$. En calculant $(f_k(x))^2 x$, montrer que $f_k(x) \ge \sqrt{x}$ pour tout $k \in \mathbb{N}^*$.
- **Q15.** Soit $x \in \mathbb{R}_+$. Montrer que la suite $(f_k(x))_{k \in \mathbb{N}^*}$ est décroissante.
- **Q16.** Déduire des deux questions précédentes que la suite de fonctions $(f_k)_{k\in\mathbb{N}}$ converge simplement vers la fonction $f:\mathbb{R}_+\to\mathbb{R}$ définie par $f(x)=\sqrt{x}$ pour tout $x\in\mathbb{R}_+$.

2

Partie II - Majoration de l'erreur

Q17. Soit $x \in \mathbb{R}_+$. Montrer que pour tout $k \in \mathbb{N}$, on a :

$$f_{k+1}(x) - \sqrt{x} = \frac{f_k(x) - \sqrt{x}}{2} \left(1 - \frac{\sqrt{x}}{f_k(x)} \right).$$

Q18. Soit $x \in \mathbb{R}_+$. En déduire que pour tout $k \in \mathbb{N}^*$, on a :

$$|f_k(x) - \sqrt{x}| \leqslant \frac{1+x}{2^k}.$$

Q19. Montrer que pour tout a > 0, la suite de fonctions $(f_k)_{k \in \mathbb{N}}$ converge uniformément sur [0, a].

Exercice 3: Endomorphisme cyclique

Présentation générale

Dans cet exercice, nous allons étudier la notion d'endomorphisme cyclique dont la définition est donnée ci-dessous. Soit f un endomorphisme d'un espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. On rappelle que pour tout entier $p \in \mathbb{N}^*$, on note :

$$f^0 = \mathrm{Id}_E, \ f^1 = f, \ f^2 = f \circ f, \ f^p = \underbrace{f \circ \cdots \circ f}_{p \text{ fois}}.$$

On dit que l'endomorphisme f est cyclique s'il existe un vecteur $v \in E$ tel que la famille $(v, f(v), \dots, f^{n-1}(v))$ soit une base de l'espace vectoriel E.

Cet exercice est composé de trois parties indépendantes. Les deux premières sont consacrées à l'étude d'exemples. Dans la dernière partie, on détermine une condition nécessaire et suffisante pour qu'un endomorphisme diagonalisable soit cyclique.

Partie I - Étude d'un premier exemple

Dans cette partie, on considère l'endomorphisme $f: \mathbb{R}^2 \to \mathbb{R}^2$ défini par :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x,y) = (4x - 2y, x + y).$$

- **Q20.** En considérant $v = (1,0) \in \mathbb{R}^2$, montrer que f est un endomorphisme cyclique de \mathbb{R}^2 .
- **Q21.** Déterminer les valeurs propres de f et donner une base de chaque sous-espace propre de f.
- **Q22.** Existe-t-il un vecteur $w \in \mathbb{R}^2$ non nul tel que la famille (w, f(w)) ne soit pas une base de \mathbb{R}^2 ?

Partie II - Étude d'un deuxième exemple

Dans cette partie, on considère l'endomorphisme $g:\mathbb{R}^3\to\mathbb{R}^3$ dont la matrice dans la base canonique est :

 $M = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

Q23. Montrer que l'on a la relation $g^2 = g + 2\operatorname{Id}_{\mathbb{R}^3}$.

 $\mathbf{Q24.}$ Montrer que la matrice M est diagonalisable et déterminer ses valeurs propres.

Q25. L'endomorphisme g est-il cyclique?

Partie III - Cas d'un endomorphisme diagonalisable

Dans cette partie, on considère un endomorphisme diagonalisable h d'un \mathbb{C} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. On souhaite déterminer une condition nécessaire et suffisante sur les valeurs propres de h pour que cet endomorphisme soit cyclique.

Comme l'endomorphisme h est diagonalisable, il existe une base $\mathscr{B} = (v_1, \ldots, v_n)$ de l'espace vectoriel E composée de vecteurs propres de h. Pour tout $k \in [1, n]$, on note $\lambda_k \in \mathbb{C}$ la valeur propre associée au vecteur propre v_k .

Soit $v \in E$. Comme \mathscr{B} est une base de E, il existe $(\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$ tel que :

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

Q26. Montrer que pour tout $p \in \mathbb{N}^*$, on a :

$$h^p(v) = \alpha_1 \lambda_1^p v_1 + \dots + \alpha_n \lambda_n^p v_n$$
.

Q27. Montrer que le déterminant de la famille $\mathscr{F} = (v, h(v), \dots, h^{n-1}(v))$ dans la base \mathscr{B} est égal à :

$$\det_{\mathscr{B}}(\mathscr{F}) = \alpha_1 \dots \alpha_n \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i).$$

Q28. Conclure que h est cyclique si et seulement si il admet n valeurs propres distinctes.

EXERCICE 4 : ÉTUDE D'UN ENDOMORPHISME SUR UN ESPACE DE POLYNÔMES

On rappelle le théorème de la division euclidienne pour les polynômes : si $U \in \mathbb{C}[X]$ et $V \in \mathbb{C}[X]$ sont deux polynômes avec $V \neq 0$, alors il existe un unique couple $(Q, R) \in \mathbb{C}[X]^2$ tel que :

$$U = VQ + R \quad \text{avec} \quad \deg(R) < \deg(V).$$

Les polynômes Q et R sont respectivement appelés le quotient et le reste dans la division euclidienne du polynôme U par V.

Dans tout l'exercice, on se donne un entier $n \in \mathbb{N}^*$ et un couple $(A, B) \in \mathbb{C}_n[X] \times \mathbb{C}[X]$ tel que $\deg(B) = n + 1$. On considère également l'application φ définie sur $\mathbb{C}_n[X]$ qui à un polynôme $P \in \mathbb{C}_n[X]$ associe le reste dans la division euclidienne de AP par B.

4

Par exemple, si on suppose que l'on a :

$$n = 2$$
, $A = X^2$, $B = X^3 - X$, $P = X^2 + X + 1$,

alors en effectuant la division euclidienne de AP par B, on obtient :

$$AP = X^4 + X^3 + X^2 = BQ + R$$
 avec $Q = X + 1$ et $R = 2X^2 + X$,

donc on a $\varphi(P) = 2X^2 + X$.

Partie I - Généralités sur l'application φ

Dans cette partie, on démontre que l'application φ est un endomorphisme de $\mathbb{C}_n[X]$.

Q29. Justifier que pour tout polynôme $P \in \mathbb{C}_n[X]$, on a $\varphi(P) \in \mathbb{C}_n[X]$.

On considère deux polynômes $P_1 \in \mathbb{C}_n[X]$ et $P_2 \in \mathbb{C}_n[X]$. Par le théorème de la division euclidienne rappelé dans la présentation, il existe $(Q_1, R_1) \in \mathbb{C}[X] \times \mathbb{C}_n[X]$ et $(Q_2, R_2) \in \mathbb{C}[X] \times \mathbb{C}_n[X]$ tels que :

$$AP_1 = BQ_1 + R_1$$
 et $AP_2 = BQ_2 + R_2$.

Q30. Soit $\lambda \in \mathbb{C}$. Exprimer le quotient et le reste dans la division euclidienne de $A(P_1 + \lambda P_2)$ par B en fonction de λ et des polynômes Q_1 , Q_2 , R_1 et R_2 en justifiant votre réponse. En déduire que φ est un endomorphisme de l'espace vectoriel $\mathbb{C}_n[X]$.

Partie II - Étude d'un premier exemple

Dans cette partie uniquement, on suppose que:

$$n = 2$$
, $A = X^2 + 2X$ et $B = X^3 + X^2 - X - 1$.

Q31. Montrer que la matrice de l'endomorphisme φ de $\mathbb{C}_2[X]$ dans la base $(1,X,X^2)$ est :

$$M = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

- Q32. Déterminer les valeurs propres et les sous-espaces propres de la matrice M.
- Q33. Justifier que l'endomorphisme φ est diagonalisable. Déterminer une base de $\mathbb{C}_2[X]$ formée de vecteurs propres de φ .

Partie III - Étude d'un second exemple

Dans cette partie uniquement, on suppose que n=2 et que $B=X^3$. Comme A est un élément de l'espace vectoriel $\mathbb{C}_2[X]$, il existe $(\alpha, \beta, \gamma) \in \mathbb{C}^3$ tel que $A = \alpha + \beta X + \gamma X^2$.

Q34. Montrer que la matrice de l'endomorphisme φ de $\mathbb{C}_2[X]$ dans la base $(1, X, X^2)$ est :

$$T = \begin{pmatrix} \alpha & 0 & 0 \\ \beta & \alpha & 0 \\ \gamma & \beta & \alpha \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

Q35. Montrer que l'endomorphisme φ est diagonalisable si et seulement si le polynôme A est constant.

Partie IV - Étude du cas où B est scindé à racines simples

Dans cette partie, on ne suppose plus que n=2: le nombre n est un entier quelconque de \mathbb{N}^* . Jusqu'à la fin de l'exercice, on suppose que B est un polynôme scindé à racines simples.

On note $x_0, \ldots, x_n \in \mathbb{C}$ les racines de B qui sont donc des nombres complexes distincts.

On définit les polynômes de Lagrange $L_0, \ldots, L_n \in \mathbb{C}_n[X]$ associés aux points x_0, \ldots, x_n par :

$$\forall k \in [0, n], \quad L_k = \prod_{\substack{i=0 \ i \neq k}}^n \frac{X - x_i}{x_k - x_i}.$$

On rappelle que la famille (L_0, \ldots, L_n) est une base de $\mathbb{C}_n[X]$.

Q36. Donner sans démonstration la valeur de $L_k(x_j)$ pour tout $(k,j) \in [0,n]^2$. Soit $P \in \mathbb{C}_n[X]$. Donner sans démonstration les cœfficients de P dans la base (L_0,\ldots,L_n) .

Pour tout entier $k \in [0, n]$, on désigne respectivement par $Q_k \in \mathbb{C}[X]$ et $R_k \in \mathbb{C}_n[X]$ le quotient et le reste dans la division euclidienne de AL_k par B.

Q37. Soit $(j,k) \in [0,n]^2$. Montrer que $R_k(x_j) = 0$ si $j \neq k$ et que $R_k(x_k) = A(x_k)$.

Q38. En déduire que pour tout $k \in [0, n]$, $\varphi(L_k) = A(x_k)L_k$.

Q39. Justifier que l'endomorphisme φ est diagonalisable et préciser ses valeurs propres.