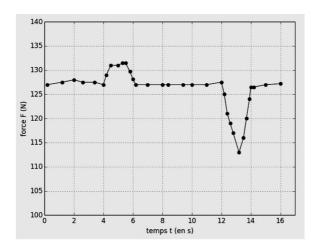
Afin de mesurer l'accélération verticale d'un ascenseur, on décide d'utiliser le capteur de force du plateau d'une console de jeu. L'ascenseur est initialement à l'arrêt. On pose le plateau sur le sol de l'ascenseur et l'on dépose un pavé de masse m sur le plateau. On actionne ensuite l'ascenseur pour passer d'un étage à un autre. Un ordinateur permet d'enregistrer la norme F de la force mesurée par le capteur en fonction du temps.



- a-A quel instant démarre l'ascenseur ?
- b-Quelle est la masse du pavé?
- c-Interpréter les variations de F en fonction du temps.
 - L'ascenseur monte-t-il ou descend-il?
- d-Estimer numériquement la vitesse de l'ascenseur en dehors des phases d'accélération.
- e-Estimer numériquement la distance qui sépare les étages de départ et d'arrivée. A combien d'étages cela correspond-il ?

4.2.1 Dynamique référentiels en translation-Exercice 13

Etude préliminaire du système {pavé} dans R' lié à l'ascenseur en translation par rapport à R.

Le pavé est soumis à :

- Son poids mgu,
- La réaction du capteur Fü,
- La force d'inertie d'entraînement : $\vec{F}_{ie} = -ma\vec{u}_z$

Théorème de la quantité de mouvement pour le pavé au repos dans R' en projection selon Oz : 0 = -mg + F -ma

Le capteur mesure la norme de la force qu'il subit donc:

$$F = m(g + a)$$

a-L'ascenseur démarre quand F varie donc à $\underline{t_i} = 4 \text{ s}$.

b-Tant que l'ascenseur n'a pas démarré : a = 0

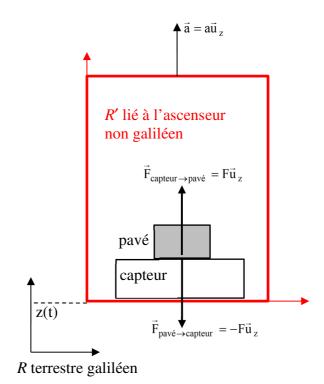
Donc a > 0. L'ascenseur accélère et monte.

Donc : F = mgOn lit: F = 127 NOn en déduit : m = 13 kg

c-Entre $t_i = 4$ s et $t_f = 6$ s : F > mg

Entre
$$t_{i2} = 12 \text{ s et } t_{f2} = 14 \text{ s} : F < mg$$

Donc a < 0. L'ascenseur freine.



d-Pendant la phase d'accélération, F augmente de 132 - 127 = 5 N. Donc ma = 5, donc $\underline{a} \approx 0.4$ m.s⁻²

Or : $\ddot{z}(t) = a$ D'où en intégrant : $\dot{z}(t) = a(t - t_i)$ car $\dot{z}(t_i) = 0$ La vitesse finale acquise à l'instant t_f : $v_f = \dot{z}(t_f) = a(t_f - t_i)$

A; N:
$$v_f = 0.8 \text{ m.s}^{-1}$$

Jusqu'à l'instant $t_{i2} = 12$ s, cette vitesse ne varie plus car la courbe montre que F = mg, donc a = 0

Entre $t_{i2} = 12$ s et $t_{f2} = 14$ s, la vitesse de l'ascenseur passe de $v_f = 0.8$ m.s⁻¹ à 0 puis reste ensuite nulle.

e-Pendant la phase d'accélération, on intègre à nouveau : $z(t) = \frac{1}{2}a(t-t_i)^2$ en supposant $z(t_i) = 0$

D'où la distance parcourue pendant la phase d'accélération : $d_1 = z(t_f) = \frac{1}{2}a(t_f - t_i)^2$

A.N :
$$d_1 \approx 0.8 \text{ m}$$

Entre $t_f = 6$ s et $t_{i2} = 12$ s, la vitesse est constante égale à v_f . La distance parcourue est $d_2 = v_f(t_{i2} - t_f)$ A.N : $d_2 \approx 4.8 \text{ m}$

Entre $t_{i2} = 12$ s et $t_{i2} = 14$ s, on peut supposer que la distance d'arrêt sera comparable à d_1 , soit environ 1 m.

La distance totale parcourue sera $\underline{d} \approx 2\underline{d}_1 + \underline{d}_2 \approx 6.5 \text{ m}$. Ce qui correspond à <u>deux étages</u>.