Algèbre Chapitre 7 : Polynômes Feuille d'exercices

2023-2024

Learcice 1 : Echauffement calculatoire

Développer les polynômes suivants :

1.
$$(2X^4 + X^3 + X^2 + X + 1)(X^2 - 3X + 1)$$
 2. $(X^3 + X^2 - X - 1)(X^2 - 2X - 1)$

3.
$$(X^2 - 4X + 1)(X^4 - X^2 + 3X + 2)$$

4.
$$P(Q)$$
 et $Q(P)$ avec $P = X^2 + X + 1$ et $Q(X) = X^2 - 1$

5.
$$P(X) = (X - 1)^2 \sum_{k=1}^{n} kX^{k-1}$$

\mathbf{E} xercice $\mathbf{2}$:

Soient a,b,c et d des nombres réels. Montrez qu'il existe un unique polynôme $P \in \mathbb{R}_3[X]$ vérifiant P(-1) = a, P'(-1) = b, P(1) = c et P'(1) = d.

Exercice 3:

On appelle polynôme pair tout polynôme P tel que P(-X) = P(X), et polynôme impair un polynôme P tel que P(-X) = -P(X).

Montrez que tous les coefficients d'indices impairs d'un polynôme pair sont nuls. Que dire des coefficients d'un polynôme impair?

ightharpoonup Exercice 4:

Déterminez le reste de la division euclidienne de A par B dans les cas suivants :

1.
$$A = X^4 - X^3 + 3X^2 + X - 1$$
 et $B = X^2 + X$

2.
$$A = X^4 - 2X^2 + X$$
 et $B = X - 1$

3.
$$A = X^n$$
 et $B = X^2 - X - 2$.

4.
$$A = X^n - 3X + 1$$
 et $B = X^2 - 3X + 2$.

5.
$$A = X^n$$
 et $B = X^2 - 2X + 1$.

Exercice 5:

Montrez que les seuls polynômes périodiques sont les polynômes constants.

Exercice 6 : Polynômes d'interpolation de Lagrange

Soit $n \in \mathbb{N}$ et $a_0, \ldots a_n$ des scalaires deux à deux distincts et $b_0, \ldots b_n$ des scalaires. On définit pour tout $i \in [0, n]$:

$$L_{i} = \frac{1}{\prod_{j \in [[0:n]] \setminus \{i\}} (a_{i} - a_{j})} \cdot \prod_{j \in [[0:n]] \setminus \{i\}} (X - a_{j}).$$

- 1. On considère le cas n=2 avec $a_0=0, a_1=1$ et $a_2=2$. Écrire les polynômes L_0, L_1 et L_2 .
- 2. On revient au cas général. Montrer que pour tout $(i,k) \in [0,n]^2$, $L_i(a_k) = \delta_{i,k}$.
- 3. Soit $P = \sum_{i=0}^n b_i L_i$. Montrer que P est l'unique polynôme de degré inférieur ou égal à n tel que : $\forall k \in [0; n], P(a_k) = b_k.$

ightharpoonup Exercice 7:

- 1. Déterminez les polynômes P tels que P(3X) = P'(X)P''(X)
- 2. Même question avec $P(X^2) = (X^2 + 1)P(X)$

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes définie par récurrence par

$$\begin{cases} P_0 = \frac{1}{2} \\ P_1 = X \\ \forall n \in \mathbb{N}, P_{n+2}(X) = 2XP_{n+1} - X^2P_n \end{cases}$$

- 1. Montrez qu'il existe une suite réelle (a_n) telle que $P_n(X) = a_n X^n$.
- 2. Calculez P_n .

Exercice 9:

- 1. Trouvez tous les polynômes de $\mathbb{R}[X]$ tels que $\forall x,y \in \mathbb{R}, P(x+y) = P(x)P(y)$
- 2. Même question avec $\forall x, y \in \mathbb{R}, P(xy) = P(x) + P(y)$.
- 3. En déduire que le logarithme et l'exponentielle ne peuvent pas être des fonctions polynomiales.

Line Exercice 10:

Déterminez l'ordre de multiplicité de la racine α dans les polynômes P suivants :

1.
$$\alpha = 2$$
 et $P(X) = X^5 - 5X^4 + 7X^3 - 2X^2 + 4X - 8$

2.
$$\alpha = -2$$
 et $P(X) = X^5 + 7X^4 + 16X^3 + 8X^2 - 16X - 16$

3.
$$\alpha = 1$$
 et $P(X) = X^{2n} - (2n+1)X^{n+1} + (2n+1)X^n - X$

Exercice 11 :

Soit $n \geq 1$.

- 1. Montrez que X + 2 divise $X^4 + 3X^3 + X^2 + 4$
- 2. Montrez que pour tout $n \in \mathbb{N}^*$, $(X+1)^2$ divise $P = X^{4n+2} + 2X^{2n+1} + 1$.
- 3. Montrez que pour tout $n \ge 1$, le polynôme $nX^{n+2} (n+2)X^{n+1} + (n+2)X n$ est divisible par $(X-1)^3$.

▲ Exercice 12:

Trouver les réels a et b tel que $(X-1)^2$ divise $aX^4 + bX^3 + 1$.

Exercice 13:

Montrez que pour tout $n \in \mathbb{N}^*$, le polynôme $X^2 + X + 1$ divise le polynôme $(X + 1)^{2n+1} + X^{n+2}$.

Exercice 14:

Ecrire la décomposition primaire des polynômes suivants dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$:

1.
$$X^2 + X + 1$$

$$2. \ -3X^2 + 5X + 2$$

3.
$$2X^3 + 3X^2 - 3X - 2$$

4.
$$X^4 - X^2 + 1$$

5.
$$X^4 + 3X^3 - 14X^2 + 22X - 12$$
 (indication $1 + i$ est racine)

6.
$$X^6 + 1$$

7.
$$X^9 + X^6 + X^3 + 1$$

Exercice 15 :

Déterminez la décomposition en éléments simples de $\mathbb{R}[X]$ des fractions rationnelles suivantes et en déduire une primitive et les dérivées n-ième de la fonction associée :

1.
$$F(X) = \frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$

2.
$$F(X) = \frac{X^3 + X}{X^2 - 4X + 3}$$

3.
$$F(X) = \frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)}$$

4.
$$F(X) = \frac{X-2}{X(X-1)^2}$$
 sous la forme $F(X) = \frac{a}{X} + \frac{b}{X-1} + \frac{c}{(X-1)^2}$