Chapitre 15

Calcul matriciel sans applications linéaires

Dans ce chapitre, nous allons apprendre à manipuler les matrices. La théorie des matrices en relation avec l'algèbre linéaire sera faîte plus tard.

On utilisera le symbole de Kronecker défini par

$$\forall i, j \in \mathbb{R}, \ \delta_{ij} = \begin{cases} 1 \text{ si } i = j, \\ 0 \text{ sinon.} \end{cases}$$

1 Définitions

Dans ce paragraphe, K est un corps (généralement \mathbb{R} ou \mathbb{C}), et $n, p, q \in \mathbb{N}^*$.

1.1 Définitions

Définition 1.1 (Matrice)

1. Une $matrice\ A$ à coefficients dans K à n lignes et p colonnes est une fonction

$$\{1,\ldots,n\}\times\{1,\ldots,p\}\longrightarrow K.$$

Pour $i \in \{1, ..., n\}$ et $j \in \{1, ..., p\}$, on note $a_{ij} = A(i, j)$, aussi appelé élément à la $i^{\text{ème}}$ ligne et $j^{\text{ème}}$ colonne, et on note

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \cdots & a_{ij} \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}.$$

 $n \times p$ est la taille de la matrice.

2. On note $\mathcal{M}_{n,p}(K)$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans K.

Définition 1.2 (Matrices carrées)

1. Une matrice carrée d'ordre n est une matrice à n lignes et n colonnes.

- 2. On note $\mathcal{M}_n(K) = \mathcal{M}_{n,n}(K)$ l'ensemble des matrices carrées d'ordre n.
- 3. Soit $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(K)$. Les éléments (a_{11},\ldots,a_{nn}) forment la diagonale de A.

Définition 1.3 (Matrice diagonale)

Une matrice diagonale d'ordre $n \in \mathbb{N}^*$ est une matrice carrée dont les coefficients en dehors de la diagonale sont tous nuls.

Définition 1.4 (Matrice nulle, matrice unité)

- 1. La matrice unité d'ordre $n I_n \in \mathcal{M}_n(K)$ est la matrice diagonale dont les éléments de la diagonale valent tous 1.
- 2. La matrice nulle à n lignes et p colonnes est la matrice dont tous les coefficients sont nuls.

Remarques.

- 1. Il y a bien sûr une infinité de matrices identités et de matrices nulles.
- 2. Une matrice unité est carré. Mais une matrice nulle pas nécessairement.

Définition 1.5 (Matrices triangulaires)

Soit
$$A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(K)$$
.

- 1. Elle est triangulaire supérieure si $a_{ij} = 0$ pour i > j.
- 2. Elle est triangulaire inférieure si $a_{ij} = 0$ pour j > i.

Remarques.

- 1. Une matrice diagonale est à la fois triangulaire supérieure et inférieure.
- 2. Une matrice triangulaire est carré.

Définition 1.6 (Matrices lignes, matrices colonnes)

- 1. Une matrice ligne est une matrice à 1 ligne et p colonnes.
- 2. Une matrice colonne est une matrice à n lignes et 1 colonne.

Remarque.

Attention: $(4 \ 5 \ -6 \ 3) \neq (4, 5, -6, 3)$.

1.2 Transposée, matrices symétriques et antisymétriques

Définition 1.7 (Transposée)

La transposée d'une matrice $A \in \mathcal{M}_{n,p}(K)$ est la matrice $A^T \in \mathcal{M}_{p,n}(K)$ définie par $A^T = (b_{ij})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq n}}$ où pour tout $i \in \{1, \ldots, p\}, j \in \{1, \ldots, n\}, b_{ij} = a_{ji}, i.e.$ les lignes de A^T sont les colonnes de A, et

les colonnes de A^T sont les lignes de A, ou encore

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \cdots & a_{ji} \\ a_{1p} & a_{2p} & \cdots & a_{np} \end{pmatrix}.$$

Proposition 1.8

Soit
$$A \in \mathcal{M}_{n,p}(K)$$
. Alors $(A^T)^T = A$.

Définition 1.9 (Matrices symétriques et antisymétriques)

Une matrice $A \in \mathcal{M}_n(K)$ est symétrique si $A^T = A$, et antisymétrique si $A^T = -A$.

On note $S_n(K)$ (resp. $A_n(K)$) l'ensemble des matrices symétriques (resp. antisymétrique) de taille n, à coefficients dans K.

Remarques.

- 1. Autrement dit, une matrice est symétrique si les lignes sontles mêmes que les colonnes, et antisymétriques si les lignes sont les opposées des colonnes.
- 2. Attention : les matrices symétriques et antisymétriques sont carrées.

Proposition 1.10

Soit
$$A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(K)$$
.

- 1. A est symétrique si et seulement si, pour tous $(i,j) \in [1,n]^2$, $a_{ij} = a_{ji}$.
- 2. A est antisymétrique si et seulement si, pour tous $(i,j) \in [1,n]^2$, $a_{ij} = -a_{ji}$.

Proposition 1.11

Soit A une matrice antisymétrique. Alors tous les éléments de sa diagonale sont nuls.

1.3 Addition des matrices et structure d'espace vectoriel

Définition 1.12 (Addition et multiplication par les scalaires)

On munit $\mathcal{M}_{n,p}(K)$ d'une addition et d'une multiplication par les scalaires définies, pour $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}, B = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ et $\lambda \in K$ par

$$A + B = (a_{ij} + b_{ij})_{ij}$$
 et $\lambda A = (\lambda a_{ij})_{ij}$.

Remarque.

Ce sont donc des opérations coefficient par coefficient, similaires à celles dans \mathbb{R}^{np} .

Proposition 1.13

L'addition définie dans la définition 1.12 munit $\mathcal{M}_{n,p}(K)$ d'une structure de groupe commutatif.

Proposition 1.14 (Transposée d'une somme)

Soient $A, B \in \mathcal{M}_{n,p}(K)$ et $\lambda \in K$. Alors

$$(A+B)^T = A^T + B^T, \qquad (\lambda A)^T = \lambda A^T.$$

Autrement dit, l'application $\mathcal{M}_{n,p}(K) \longrightarrow \mathcal{M}_{p,n}(K)$ qui à A associe A^T est une application linéaire.

1.4 Produit matriciel et structure d'anneau

Définition 1.15 (Produit de matrices)

On définit une multiplication des matrices

$$\mathcal{M}_{n,p}(K) \times \mathcal{M}_{p,q}(K) \longrightarrow \mathcal{M}_{n,q}(K)$$

 $(A,B) \longmapsto AB$

définie pour $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ et $B = (b_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le q}}$ par

$$AB = (c_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le q}}$$
 où $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}, i \in [1, n]$ et $j \in [1, q]$.

Remarques.

- 1. Le produit AB n'existe que si le nombre de colonnes de A est égal au nombre de lignes de B.
- 2. Un cas particulier intéressant est celui des matrices carrées (n = p = q), qui fournit un produit

$$\mathcal{M}_n(K) \times \mathcal{M}_n(K) \longrightarrow \mathcal{M}_n(K)$$

3. Il faut voir le produit de la façon suivante : le coefficient à la ligne i, colonne j est obtenue en faisant le "produit scalaire" de la ligne i de A avec la colonne j de B.

Proposition 1.16

Soit
$$A \in \mathcal{M}_{n,p}(K)$$
. Alors $AI_p = I_n A = A$.

Remarque.

Il faut faire le calcul aussi visuellement. Écrivez la matrice A formellement, en faisant apparaître ses lignes, puis à côté la matrice I_p à sa droite. Faîtes le produit, et regardez pourquoi on obtient A.

Proposition 1.17

Soient $n, p, q, r \in \mathbb{N}^*$. Alors

1. Si $A \in \mathcal{M}_{n,p}(K)$, $B, C \in \mathcal{M}_{p,q}(K)$, $D \in \mathcal{M}_{q,r}(K)$, on a

$$A(B+C) = AB + AC$$
 et $(B+C)D = BD + CD$.

2. Pour tous $\lambda \in K$ et $A \in \mathcal{M}_{n,p}(K)$, $B \in \mathcal{M}_{p,q}(K)$, on a

$$\lambda(AB) = (\lambda A)B.$$

3. Si $A \in \mathcal{M}_{n,p}(K)$, $B \in \mathcal{M}_{p,q}(K)$, $D \in \mathcal{M}_{q,r}(K)$, on a

$$(AB)D = A(BD).$$

Proposition 1.18 (Structure d'anneau)

L'ensemble $(\mathcal{M}_n(K), +, \times)$ est un anneau (non commutatif si $n \ge 2$), dont l'élément neutre pour la multiplication est la matrice unité I_n .

Remarque.

On a bien sûr $A^i A^j = A^j A^i = A^{i+j}$.

Proposition 1.19

Soient $n, p \in \mathbb{N}$ et $A, B \in \mathcal{M}_p(K)$.

1. Si AB = BA, alors

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k},$$

où par convention $M^0 = I_p$ pour toute matrice $M \in \mathcal{M}_p(K)$.

2. En particulier,

$$(A+I_p)^n = \sum_{k=0}^n \binom{n}{k} A^k.$$

3. En particulier, si A est inversible,

$$(A+A^{-1})^n = \sum_{k=0}^n \binom{n}{k} A^{2k-n}.$$

Remarque.

Attention, la formule est fausse si les matrices A et B ne commutent pas. Par exemple, en général,

$$(A+B)^2 = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2.$$

Vous pouvez essayer avec $A = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 1 \\ 0 & 4 \end{pmatrix}$.

Proposition 1.20 (Transposé d'un produit)

Soient $A \in \mathcal{M}_{n,p}(K)$ et $B \in \mathcal{M}_{p,r}$. Alors $(AB)^T = B^T A^T$.

Proposition 1.21 (Produit de matrices diagonales et triangulaires)

Soient $A = (a_{ij})_{1 \leq i,j \leq n}, B = (b_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(K).$

- 1. Si A et B sont diagonales, alors AB est diagonale, et sa diagonale est $(a_{11}b_{11}, \ldots, a_{nn}b_{nn})$.
- 2. Si A et B sont triangulaires supérieures (resp. inférieures), alors AB est triangulaire supérieure (resp. inférieure), et sa diagonale est $(a_{11}b_{11}, \ldots, a_{nn}b_{nn})$.

Corollaire 1.22

Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(K)$, et $p \in \mathbb{N}$.

- 1. Si A est diagonale, alors A^p est diagonale, et sa diagonale est $(a_{11}^p, \ldots, a_{nn}^p)$.
- 2. Si A est triangulaire supérieure (resp. inférieure), alors A^p est triangulaire supérieure (resp. inférieure), et sa diagonale est $(a_{11}^p, \ldots, a_{nn}^p)$.

1.5 Trace

Définition 1.23 (Trace)

Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(K)$. La trace de A est la somme des éléments de la diagonale de A, *i.e.*

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Remarque.

La trace n'existe que pour une matrice carrée.

Proposition 1.24

Soient $A, B \in \mathcal{M}_n(K)$, et $\lambda, \mu \in K$. Alors $\operatorname{tr}(\lambda A + \mu B) = \lambda \operatorname{tr}(A) + \mu \operatorname{tr}(B)$. Autrement dit, la trace est une forme linéaire sur $\mathcal{M}_n(K)$.

Proposition 1.25

Soient $A \in \mathcal{M}_{n,p}(K)$ et $B \in \mathcal{M}_{p,n}(K)$. Alors $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Remarque.

Attention : $tr(AB) \neq tr(A) tr(B)$.

2 Matrices inversibles

2.1 Définition et propriétés

Définition 2.1

Une matrice $A \in \mathcal{M}_n(K)$ est inversible s'il existe une matrice $B \in \mathcal{M}_n(K)$ tel que

$$AB = BA = I_n$$

i.e. si A et inversible dans l'anneau $\mathcal{M}_n(K)$. La matrice B est alors son inverse et on note

$$B = A^{-1}.$$

On note $GL_n(K)$ l'ensemble des matrices carrées d'ordre n inversibles.

Remarque.

GL signifie "groupe linéaire".

Proposition 2.2

Soient $n, p \in \mathbb{N}^*$, $A \in GL_n(K)$ et $B, C \in \mathcal{M}_{n,p}(K)$.

- 1. Si AB = C, alors $B = A^{-1}C$.
- 2. Si AB = 0, alors B = 0.
- 3. Si AB = AC, alors B = C.

Remarques.

- 1. Ce sont en fait des équivalences.
- 2. On a simplement redémontré qu'un élément inversible (ici A) dans un anneau (ici $\mathcal{M}_n(K)$) est un élément régulier, donc on peut simplifier par un tel élément.
- 3. Attention: c'est faux si A n'est pas inversible. Par exemple, avec $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, on a AB = 0, mais $A \neq 0$ et $B \neq 0$.

Proposition 2.3

Soient $a, b, c, d \in K$. Alors $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si et seulement si $ad - bc \neq 0$, et si c'est le cas, son inverse est la matrice $\frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Remarque.

On verra plus tard comment déterminer si une matrice de taille $\geqslant 3$ est inversible, et comment déterminer son inverse.

Proposition 2.4

Soit $A \in GL_n(K)$.

- On a $A^{-1} \in GL_n(K)$ et $(A^{-1})^{-1} = A$.
- On a $A^T \in GL_n(K)$ et $(A^T)^{-1} = (A^{-1})^T$.

Proposition 2.5

L'ensemble $GL_n(K)$ est un groupe pour la multiplication des matrices.

Définition 2.6

Soit $A \in GL_n(K)$ et $i \in \mathbb{N}$. On définit A^{-i} par : $A^{-i} = (A^i)^{-1}$.

Proposition 2.7

Soient $A, B \in \mathcal{M}_n(K)$ telles que $AB = I_n$. Alors A et B sont inversibles et $A^{-1} = B$.

Définition 2.8

Deux matrices $A, B \in \mathcal{M}_n(K)$ sont semblables s'il existe $P \in GL_n(K)$ tel que $B = P^{-1}AP$.

Remarque.

C'est en fait une relation d'équivalence sur l'ensemble des matrices carrées.

Proposition 2.9

Deux matrices semblables ont même trace.

Inversion d'une matrice par résolution d'un système linéaire

Définition 2.10

2.2

Un système linéaire à n équations et p inconnues est un système du type

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{ip}x_p = b_i \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases}$$

οù

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le i \le n}} \in \mathcal{M}_{n,p}(K), \qquad b_1, \dots, b_n \in K$$

ou $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(K), \qquad b_1, \dots, b_n \in K$ et les inconnues sont $x_1, \dots, x_p \in K$. Un tel système est équivalent à l'équation AX = B, où B est une matrice colonne $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathcal{M}_{n,1}(K)$, et l'inconnue est $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathcal{M}_{p,1}(K)$. La matrice

A est la matrice du système, et B est le second membre.

- 2. Le système est compatible s'il admet au moins une solution.
- 3. Si B = 0, le système est homogène.
- 4. Le système homogène associ'e au système est le système obtenu en remplaçant B par la colonne nulle.

Proposition 2.11

Avec les notations précédentes, la matrice AX est une matrice colonne, combinaison linéaire des colonnes de A.

Proposition 2.12

Avec les notations précédentes, le système AX = B est compatible si et seulement si B est une combinaison linéaire des colonnes de A.

Proposition 2.13

Avec les notations précédentes, les solutions du système AX = B sont les colonnes $X_0 + Y$, où X_0 est une solution particulière du système, et où Y parcourt l'ensemble des solutions du système homogène associé.

Proposition 2.14

Avec les notations précédentes, si n = p, le système admet une unique solution si et seulement si la matrice A est inversible.

Méthode 2.15

Pour déterminer si une matrice carrée A est inversible, et le cas échéant calculer son inverse, on résout AX = Y, où X et Y sont des matrices colonnes (avec autant de lignes que A). La matrice A est inversible si et seulement si ce système admet une unique solution pour tout Y, et alors on obtient A^{-1} en écrivant que

$$\begin{cases} x_1 = b_{11}y_1 + \dots + b_{1n}y_n \\ \vdots = \vdots + \dots + \vdots \\ x_n = b_{n1}y_1 + \dots + b_{nn}y_n \end{cases},$$

on lit

$$A^{-1} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \cdots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix}.$$

Proposition 2.16 (Inverse des matrices triangulaires)

- 1. Une matrice triangulaire $A \in \mathcal{M}_n(K)$ est inversible si et seulement si ses éléments sur la diagonale sont tous non nuls, et alors A^{-1} est triangulaire de même forme, dont les éléments sur la diagonale sont les inverses de ceux de A.
- 2. Une matrice diagonale $A \in \mathcal{M}_n(K)$ est inversible si et seulement si ses éléments sur la diagonale sont tous non nuls, et alors A^{-1} est diagonale, dont les éléments sur la diagonale sont les inverses de ceux de A.

3 Matrices et manipulations élémentaires

3.1 Matrices élémentaires

Définition 3.1 (Matrices élémentaires)

Soient $n, p \in \mathbb{N}^*$, $i \in [1, n]$ et $j \in [1, p]$. On définit la matrice $E_{ij}^{np} \in \mathcal{M}_{n,p}(K)$ comme étant la matrice dont tous les coefficients sont nuls, sauf le coefficient (i, j) qui vaut 1.

Proposition 3.2

- 1. Soient $n, p, q \in \mathbb{N}^*$, $i \in [1, n]$, $j, k \in [1, p]$, $\ell \in [1, q]$. Alors $E_{ij}^{np} E_{k\ell}^{pq} = \delta_{jk} E_{i\ell}^{nq}$.
- 2. Soit $A \in \mathcal{M}_{p,q}(K)$. Alors $E_{ij}^{np}A$ est la matrice dont la $i^{\text{ème}}$ ligne est la ligne j de A et dont les autres lignes sont nulles.
- 3. Soit $A \in \mathcal{M}_{n,p}(K)$. Alors $AE_{k\ell}^{pq}$ est la matrice dont la $\ell^{\text{ème}}$ colonne est la colonne k de A et dont les autres colonnes sont nulles.

Définition 3.3

Soient $n \in \mathbb{N}$ et $i, j \in [1, n]$ avec $i \neq j$. On définit les matrices de $\mathcal{M}_n(K)$

$$P_{ij} = I_n - E_{ii} - E_{jj} + E_{ij} + E_{ji},$$

$$D_i(\lambda) = I_n + (\lambda - 1)E_{ii},$$

$$T_{ij}(\lambda) = I_n + \lambda E_{ij}.$$

Remarque.

Le "P" est pour "permutation", "T" pour "transvection", et "D" pour "dilatation".

Proposition 3.4

Les matrices de la définition précédente sont inversibles et on a

$$P_{ij}^{-1} = P_{ij}, \qquad D_i(\lambda)^{-1} = D_i\left(\frac{1}{\lambda}\right) \text{ si } \lambda \neq 0, \qquad (T_{ij}(\lambda))^{-1} = T_{ij}(-\lambda).$$

3.2 Manipulations élémentaires

Définition 3.5 (Manipulations élémentaires)

Les manipulations élémentaires sur une matrice sont les opérations suivantes :

- 1. Multiplier une ligne (ou une colonne) par un scalaire non nul.
- 2. Échanger deux lignes (deux colonnes).
- 3. Ajouter à une ligne (à une colonne) λ fois une autre ($\lambda \in K$).

Proposition 3.6 (Manipulations élémentaires et matrices élémentaires)

Soit $A \in \mathcal{M}_n(K)$ et $i, j \in [1, n]$.

- 1. Multiplier la ligne (resp. colonne) i de A par un scalaire $\lambda \neq 0$ revient à faire le produit $D_i(\lambda)A$ (resp. $AD_i(\lambda)$).
- 2. Échanger les lignes (resp. colonnes) i, j de A revient à faire le produit $P_{ij}A$ (resp. AP_{ij}).
- 3. Ajouter à la ligne (resp. colonne) i de A λ -fois la ligne (resp. colonne) j de A revient à faire le produit $T_{ij}(\lambda)A$ (resp. $AT_{ji}(\lambda)$).

Proposition 3.7

Les manipulations élémentaires transforment une matrice inversible (resp non inversible) en une matrice inversible (resp. non inversible).

Proposition 3.8 (Pivot de Gauss)

Soit $A \in \mathcal{M}_n(K)$.

- 1. La matrice A est inversible si et seulement si on peut transformer A en I_n à l'aide d'une succession de manipulations élémentaires **uniquement** sur les lignes (ou **uniquement** sur les colonnes).
- 2. Si A est inversible, en appliquant les manipulations élémentaires précédentes à la matrice I_n , on obtient l'inverse de A.

Méthode 3.9

Voici comment on procède pour inverser avec le pivot de Gauss. On explique la méthode sur un exemple. On procède en ne manipulant que sur ls lignes.

1. On transforme la première colonne en $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. Pour cela, on choisit sur la première colonne un

élément qu'on appelle le **pivot**. On va devoir diviser par ce nombre, donc c'est un élément **non nul**, le plus simple possible (1, c'est simple. $\sqrt{17} - \pi$ beaucoup moins). Dans l'exemple qui suit, les pivots sont encadrés.

- 2. On échange la première ligne et la ligne du pivot. Cela met le pivot en première ligne.
- 3. On divise la première ligne par le pivot. Ainsi, on obtient 1 sur la ligne 1, colonne 1.
- 4. Par des manipulations élémentaires à l'aide de la ligne 1, on transforme la colonne 1 comme voulu, voir l'exemple.
- 5. À partir de ce moment-là, on ne touche plus à la première colonne, et on n'échange plus la première ligne avec une autre.
- 6. Ensuite, on transforme la deuxième colonne en $\begin{pmatrix} 0\\1\\0\\\vdots\\0 \end{pmatrix}$. Pour cela, on choisit sur la deuxième

colonne, et à partir de la ligne 2, un élément qu'on appelle le pivot. On va devoir diviser par ce nombre, donc c'est un élément non nul, le plus simple possible.

- 7. On échange la deuxième ligne et la ligne du pivot. Cela met le pivot en deuxième ligne.
- 8. Par des manipulations élémentaires à l'aide de la ligne 2, on transforme la colonne 2 comme voulu, voir l'exemple.
- 9. À partir de ce moment-là, on ne touche plus ni à la première colonne, ni à la deuxième, et on n'échange plus, ni la première ligne, ni la deuxième avec une autre.
- 10. On transforme la troisème colonne etc...

Inversons la matrice $A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ par la méthode du pivot de Gauss.

Ceci prouve que
$$A$$
 est inversible et que $A^{-1}=\begin{pmatrix} -1/6 & 1/3 & 1/2 \\ -1/6 & -2/3 & 1/2 \\ 1/2 & 0 & -1/2 \end{pmatrix}$