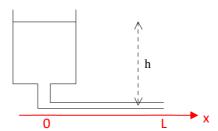
Un récipient cylindrique vertical, de diamètre D = 5 cm, est terminé par un tube horizontal de diamètre d = 1 mm et de longueur L = 40 cm.

Un liquide visqueux et incompressible s'écoule lentement. Sa hauteur h passe de 5 cm à 2,5 cm en une heure et



On admet que le débit dans le tube horizontal est donné par la loi de Poiseuille : $q_v = \frac{\Delta P}{128 n L} \pi d^4$

où ΔP est la différence de pression entre les deux extrémités du tube.

Déterminer la viscosité cinématique du liquide.

Bilan de volume entre t et t+dt pour le liquide incompressible dans le récipient :

Volume à t+dt = Volume à t – Volume sorti pendant dt =>
$$\pi \frac{D^2}{4} h(t+dt) = \pi \frac{D^2}{4} h(t) - q_v dt$$

=> $\pi \frac{D^2}{4} \frac{dh}{dt} = -\frac{\Delta P}{128\eta L} \pi d^4$
=> $\frac{dh}{dt} + \frac{\Delta P}{32\eta LD^2} d^4 = 0$

On cherche : $\Delta P = P(x=0) - P(x=L)$

La pression à la sortie du tube horizontal est : $P(L) = P_0$ (pression atmosphérique)

Puisque le liquide s'écoule lentement, on peut considérer qu'il est presque au repos dans le récipient. La pression à l'entrée du tube horizontal est donnée par la loi de la statique des fluides : $P(0) = P_0 + \mu gh$ Donc : $\Delta P = \mu gh$

On a donc l'équation différentielle :
$$\frac{dh}{dt} + \frac{\mu g d^4}{32 \eta L D^2} h = 0$$

De solution :
$$h = h_0 e^{-t/\tau}$$
 avec : $\tau = \frac{32\eta LD^2}{\mu gd^4}$

On a:
$$h_0 = h(t = 0) = 5 \text{ cm}$$
 et $h_1 = h(t_1 = 75 \text{ min}) = 2.5 \text{ cm}$

Donc:
$$\operatorname{Ln}(\frac{h_1}{h_0}) = -\frac{t_1}{\tau} \implies \tau = \frac{t_1}{\operatorname{Ln}(\frac{h_0}{h_1})}$$

$$= \sqrt{v = \frac{\eta}{\mu}} = \frac{\operatorname{gd}^4 t_1}{32LD^2 \operatorname{Ln}(\frac{h_0}{h_1})}$$

A .N :
$$v = 2.10^{-6} \text{ m}^2.\text{s}^{-1}$$