Chapitre Él.4

Filtrage linéaire

Compétences à acquérir

- Analyser la décomposition fournie d'un signal périodique en une somme de fonctions sinusoïdales.
- Interpréter le fait que le carré de la valeur efficace d'un signal périodique est égal à la somme des carrés des valeurs efficaces de ses harmoniques.
- Tracer le diagramme de Bode (amplitude et phase) associé à une fonction de transfert d'ordre 1.
- Utiliser une fonction de transfert donnée d'ordre 1 ou 2 (ou ses représentations graphiques) pour étudier la réponse d'un système linéaire à une excitation sinusoïdale, à une somme finie d'excitations sinusoïdales, à un signal périodique.
- Utiliser les échelles logarithmiques et interpréter les zones rectilignes des diagrammes de Bode en amplitude d'après l'expression de la fonction de transfert.
- ₫ Mettre en œuvre un dispositif expérimental illustrant l'utilité des fonctions de transfert pour un système linéaire à un ou plusieurs étages.
- Choisir un modèle de filtre en fonction d'un cahier des charges.
- Expliciter les conditions d'utilisation d'un filtre en tant que moyenneur, intégrateur, ou dérivateur.
- Expliquer l'intérêt, pour garantir leur fonctionnement lors de mises en cascade, de réaliser des filtres de tension de faible impédance de sortie et forte impédance d'entrée.
- Expliquer la nature du filtrage introduit par un dispositif mécanique.
- ₫ Étudier le filtrage linéaire d'un signal non sinusoïdal à partir d'une analyse spectrale.
- ₫ Détecter le caractère non linéaire d'un système par l'apparition de nouvelles fréquences.
- Simuler, à l'aide d'un langage de programmation, l'action d'un filtre sur un signal périodique dont le spectre est fourni. Mettre en évidence l'influence des caractéristiques du filtre sur le filtrage.

Chapitre Él.4

Filtrage linéaire

Compétences à acquérir

- Analyser la décomposition fournie d'un signal périodique en une somme de fonctions sinusoïdales.
- Interpréter le fait que le carré de la valeur efficace d'un signal périodique est égal à la somme des carrés des valeurs efficaces de ses harmoniques.
- Tracer le diagramme de Bode (amplitude et phase) associé à une fonction de transfert d'ordre 1.
- Utiliser une fonction de transfert donnée d'ordre 1 ou 2 (ou ses représentations graphiques) pour étudier la réponse d'un système linéaire à une excitation sinusoïdale, à une somme finie d'excitations sinusoïdales, à un signal périodique.
- Utiliser les échelles logarithmiques et interpréter les zones rectilignes des diagrammes de Bode en amplitude d'après l'expression de la fonction de transfert.
- ₫ Mettre en œuvre un dispositif expérimental illustrant l'utilité des fonctions de transfert pour un système linéaire à un ou plusieurs étages.
- Choisir un modèle de filtre en fonction d'un cahier des charges.
- Expliciter les conditions d'utilisation d'un filtre en tant que moyenneur, intégrateur, ou dérivateur.
- Expliquer l'intérêt, pour garantir leur fonctionnement lors de mises en cascade, de réaliser des filtres de tension de faible impédance de sortie et forte impédance d'entrée.
- Expliquer la nature du filtrage introduit par un dispositif mécanique.
- **4** Étudier le filtrage linéaire d'un signal non sinusoïdal à partir d'une analyse spectrale.
- ₫ Détecter le caractère non linéaire d'un système par l'apparition de nouvelles fréquences.
- Simuler, à l'aide d'un langage de programmation, l'action d'un filtre sur un signal périodique dont le spectre est fourni. Mettre en évidence l'influence des caractéristiques du filtre sur le filtrage.