DM8 (INTÉGRATION) Pour le lundi 8 janvier

Problème 1 : étude de quelques intégrales classiques (niveau 1)

A. FONCTION GAMMA D'EULER

On pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1. Montrer que la fonction Γ a pour ensemble de définition $]0, +\infty[$.
- 2. Montrer que pour tout $x \in]0, +\infty[$, $\Gamma(x+1) = x\Gamma(x)$. En déduire la valeur de $\Gamma(n)$ pour tout $n \in \mathbb{N}^*$.
- 3. Montrer l'existence des intégrales $\int_0^{+\infty} e^{-t^2} dt$ et $\int_0^{+\infty} e^{-t^4} dt$ et les exprimer à l'aide de Γ .

B. Intégrales de Gauss

On appelle intégrales de Gauss les intégrales $\int_{-\infty}^{+\infty} e^{-at^2} dt$ où a est un réel strictement positif.

- 1. Montrer que pour tout réel u, on a $e^u \ge 1 + u$.
- 2. Soit n un entier naturel non nul. Montrer que :

$$\begin{cases} (1-u)^n \leqslant e^{-nu} & \text{si} \quad u \leqslant 1\\ e^{-nu} \leqslant \frac{1}{(1+u)^n} & \text{si} \quad u > -1. \end{cases}$$

3. Soit $n \in \mathbb{N}^*$.

Montrer que les intégrales $\int_0^1 (1-x^2)^n dx$, $\int_0^{+\infty} e^{-nx^2} dx$ et $\int_0^{+\infty} \frac{dx}{(1+x^2)^n}$ convergent et établir les inégalités :

$$\int_0^1 (1 - x^2)^n \, \mathrm{d}x \le \int_0^{+\infty} \mathrm{e}^{-nx^2} \, \mathrm{d}x \le \int_0^{+\infty} \frac{\mathrm{d}x}{(1 + x^2)^n}.$$

4. À l'aide de trois changements de variable, en déduire que pour tout $n \in \mathbb{N}^*$:

$$W_{2n+1} \leqslant \frac{1}{\sqrt{n}} \int_0^{+\infty} e^{-t^2} dt \leqslant W_{2n-2}$$

où pour tout entier naturel n, on note :

$$W_n = \int_0^{\pi/2} (\cos t)^n \, \mathrm{d}t.$$

- 5. En admettant que $W_n \sim \sqrt{\frac{\pi}{2n}}$, calculer $\int_0^{+\infty} e^{-t^2} dt$.
- 6. Montrer que pour tout $a \in]0, +\infty[$, l'intégrale $\int_{-\infty}^{+\infty} e^{-at^2} dt$ converge et déterminer sa valeur.

C. Intégrale de Dirichlet

On appelle $intégrale\ de\ Dirichlet$ l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$.

- 1. Montrer que l'intégrale $\int_0^{+\infty} \frac{1-\cos(t)}{t^2} dt$ converge.
- 2. En déduire que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ est convergente. On note I sa valeur.
- 3. Pour tout $n \in \mathbb{N}$, on note :

$$I_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin t} dt$$
 et $J_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt$.

- (a) Justifier que I_n et J_n sont bien définis pour tout $n \in \mathbb{N}$.
- (b) Montrer que pour tout $n \in \mathbb{N}$, on a $I_{n+1} I_n = 0$. En déduire I_n pour tout $n \in \mathbb{N}$.
- (c) Soit $\varphi:[0,\pi/2] \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 . À l'aide d'une intégration par parties, montrer que :

$$\lim_{n\to+\infty}\int_0^{\pi/2}\varphi(t)\sin((2n+1)t)\mathrm{d}t=0.$$

- (d) En déduire que $\lim_{n\to+\infty} (J_n I_n) = 0$.
- (e) Montrer que $\lim_{n \to +\infty} J_n = \int_0^{+\infty} \frac{\sin t}{t} dt$.
- (f) En déduire la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.
- 4. Montrer que pour tout $n \in \mathbb{N}^*$, $\int_{\pi}^{n\pi} \frac{|\sin t|}{t} dt \geqslant \sum_{k=2}^{n} \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin t| dt$.

En déduire que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ n'est pas absolument convergente.

Problème 2 (sujet Mines, niveau 2)

Tout au long du problème, le disque unité ouvert de ${\bf C}$ sera noté :

$$D = \{ z \in \mathbf{C} \mid |z| < 1 \} .$$

A. Fonctions L et P

1. Soit $z \in D$. Montrer la convergence de la série $\sum_{n \ge 1} \frac{z^n}{n}$.

Préciser la valeur de sa somme lorsque $z \in]-1,1[$. On notera :

$$L(z) \coloneqq \sum_{n=1}^{+\infty} \frac{z^n}{n}.$$

- 2. Soit $z \in D$. Montrer que la fonction $\Phi : t \mapsto L(tz)$ est dérivable sur [-1,1] et donner une expression simple de sa dérivée.
- 3. Soit $z \in D$. Montrer que la fonction $\Psi: t \mapsto (1-tz)e^{L(tz)}$ est constante sur [0,1], et en déduire que :

$$\exp(L(z)) = \frac{1}{1-z}.$$

4. Montrer que $|L(z)| \le -\ln(1-|z|)$ pour tout z dans D.

En déduire la convergence de la série $\sum_{n\geqslant 1} L(z^n)$ pour tout z dans D.

Dans la suite, on notera, pour z dans D:

$$P(z) := \exp \left[\sum_{n=1}^{+\infty} L(z^n) \right].$$

5. Soit $z \in D$. Vérifier que $P(z) \neq 0$, que :

$$P(z) = \lim_{N \to +\infty} \prod_{n=1}^{N} \frac{1}{1 - z^n}$$

et que pour tout réel t > 0 :

$$\ln (P(e^{-t})) = -\sum_{n=1}^{+\infty} \ln (1 - e^{-nt}).$$

B. Développement asymptotique en variable réelle

Dans cette partie, on introduit la fonction q qui à tout réel x associe le nombre réel $q(x) = x - \lfloor x \rfloor - \frac{1}{2}$, où $\lfloor x \rfloor$ désigne la partie entière de x.

- 1. Montrer que q est continue par morceaux sur \mathbf{R} , qu'elle est 1-périodique et que la fonction |q| est paire.
- 2. Montrer que $\int_1^{+\infty} \frac{q(u)}{e^{tu}-1} du$ est bien définie pour tout réel t>0.
- 3. Montrer que pour tout entier n > 1:

$$\int_{1}^{n} \frac{q(u)}{u} du = \ln(n!) + (n-1) - n \ln(n) - \frac{1}{2} \ln(n) = \ln\left(\frac{n!e^{n}}{n^{n}\sqrt{n}}\right) - 1.$$

4. Montrer que $\int_{\lfloor x \rfloor}^{x} \frac{q(u)}{u} du$ tend vers 0 quand x tend vers $+\infty$, et en déduire la convergence de l'intégrale $\int_{1}^{+\infty} \frac{q(u)}{u} du$, ainsi que l'égalité :

$$\int_{1}^{+\infty} \frac{q(u)}{u} du = \frac{\ln(2\pi)}{2} - 1.$$

5. Montrer que l'intégrale $\int_0^{+\infty} \ln(1 - e^{-u}) du$ converge. On admet pour la suite qu'elle a pour valeur :

$$\int_0^{+\infty} \ln(1 - e^{-u}) \, \mathrm{d}u = -\frac{\pi^2}{6}.$$

6. Montrer que :

$$\int_0^1 \ln \left(\frac{1 - e^{-tu}}{t} \right) du \underset{t \to 0^+}{\longrightarrow} -1.$$

3

On pourra commencer par établir que $x \mapsto \frac{1 - e^{-x}}{x}$ est décroissante sur \mathbb{R}_+^* .

Pour $k \in \mathbf{N}^*$ et $t \in \mathbf{R}_+$, on pose :

$$u_k(t) = \int_{k/2}^{(k+1)/2} \frac{tq(u)}{e^{tu} - 1} du$$
 si $t > 0$, et $u_k(t) = \int_{k/2}^{(k+1)/2} \frac{q(u)}{u} du$ si $t = 0$.

On admet que u_k est continue sur \mathbf{R}_+ pour tout $k \in \mathbf{N}^*$.

7. Soit $t \in \mathbf{R}_{+}^{*}$. Montrer successivement que $|u_{k}(t)| = \int_{k/2}^{(k+1)/2} \frac{t|q(u)|}{e^{tu} - 1} du$ puis $u_{k}(t) = (-1)^{k+1} |u_{k}(t)|$ pour tout entier $k \ge 1$, et établir enfin que :

$$\forall n \in \mathbf{N}^*, \left| \sum_{k=n}^{+\infty} u_k(t) \right| \le \frac{1}{2n}.$$

On admettra dans la suite que cette majoration vaut encore pour t = 0.

8. En déduire que :

$$\int_{1}^{+\infty} \frac{tq(u)}{e^{tu} - 1} du \xrightarrow[t \to 0^{+}]{} \frac{\ln(2\pi)}{2} - 1.$$

9. Montrer, pour tout réel t > 0, l'identité :

$$\int_{1}^{+\infty} \frac{tq(u)}{e^{tu} - 1} du = -\frac{1}{2} \ln (1 - e^{-t}) - \ln (P(e^{-t})) - \int_{1}^{+\infty} \ln (1 - e^{-tu}) du.$$

10. Conclure que:

$$\ln\left(P\left(e^{-t}\right)\right) = \frac{\pi^2}{6t} + \frac{\ln(t)}{2} - \frac{\ln(2\pi)}{2} + \underset{t \to 0^+}{o}(1).$$