Chapitre 24

Applications linéaires

Dans tout ce chapitre, on fixe un corps K (en général, \mathbb{R} ou \mathbb{C}).

Applications linéaires

1.1 Applications linéaires

Définition 1.1 (Applications linéaires)

Soient E et F deux K-espaces vectoriels. Une application linéaire de E vers F est une application $f:E\longrightarrow F$ telle que

$$\forall x, y \in E, \ \forall \ \lambda \in K, \ f(x+y) = f(x) + f(y) \quad \text{et} \quad f(\lambda x) = \lambda f(x).$$

Proposition 1.2

1

Soient E, F deux K-espaces vectoriels et $f: E \longrightarrow F$ une application linéaire. Alors $f(0_E) = 0_F$.

Remarque.

Ici aussi, il faut savoir qui sont ces "0".

Proposition 1.3 (Caractérisation des applications linéaires)

Soient E, F deux K-espaces vectoriels. Une application $f: E \longrightarrow F$ est linéaire si et seulement si

$$\forall x, y \in E, \ \forall \lambda, \mu \in K, \ f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$$

Définition 1.4

- 1. On note $\mathcal{L}(E,F)$ l'ensemble des applications K-linéaires de E vers F.
- 2. Un endomorphisme de E est une application linéaire de E vers E. On note $\mathcal{L}(E)$ l'ensemble des endormorphismes de E.
- 3. Un forme linéaire sur E est une application linéaire de E vers son corps de base K. On note E^* l'ensemble des formes linéaires sur E, appelé dual de E.

On a
$$\mathcal{L}(E) = \mathcal{L}(E, E), \qquad E^* = \mathcal{L}(E, K).$$

Proposition 1.5 (Image d'une combinaison linéaire)

L'image d'une combinaison linéaire par une application linéaire est la combinaison linéaire des images, i.e. si $f \in \mathcal{L}(E,F)$ et x_1,\ldots,x_n $(n \in \mathbb{N}^*)$ sont des vecteurs de E et $(\lambda_1,\ldots,\lambda_n) \in E^n$, alors

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) = \sum_{k=1}^{n} \lambda_k f(x_k).$$

1.2 Combinaisons linéaires et composition d'applications linéaires

Proposition 1.6

L'ensemble $\mathcal{L}(E, F)$ est un sous-espace vectoriel du K-espace vectoriel $\mathcal{F}(E, F)$, *i.e.* les combinaisons linéaires d'applications linéaires sont des applications linéaires.

Remarque.

Cela prouve aussi que E^* et $\mathcal{L}(E)$ sont des espaces vectoriels.

Proposition 1.7 (Composition d'applications linéaires)

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors $g \circ f \in \mathcal{L}(E, G)$. Autrement dit, la composée de deux applications linéaires est une application linéaire.

Proposition 1.8

 $(\mathcal{L}(E), +, \circ)$ est un anneau.

Remarques.

- 1. Par contre, $(E^E, +, \circ)$ (ensemble de toutes les fonctions de E vers E) n'est pas un anneau, car la distributivité à gauche nécessite la linéarité des fonctions.
- 2. Ces propositions permettent de prouver qu'une application est linéaire "par combinaisons linéaires et composées d'applicatins linéaires".

1.3 Isomorphismes, automorphismes

Définition 1.9 (Isomorphisme, automorphisme)

- 1. Un isomorphisme de E vers F est une application linéaire $f \in \mathcal{L}(E, F)$ bijective.
- 2. Un automorphisme de E et un isomorphisme de E vers E. On note GL(E) l'ensemble des automorphismes de E.

Définition 1.10 (Espaces isomorphes)

Deux K-espaces vectoriels E et F sont isomorphes s'il existe un isomorphisme $f: E \longrightarrow F$.

Proposition 1.11

Soit $f \in \mathcal{L}(E, F)$ une application linéaire bijective. Alors son application réciproque f^{-1} est linéaire, *i.e.*

$$f^{-1} \in \mathcal{L}(F, E)$$
.

Proposition 1.12

Soit E un K-espace vectoriel. Alors (GL(E)) est un sous-groupe du groupe (S_E, \circ) des permutations de E.

2 Noyau et image

On fixe deux K-espaces vectoriels E et F.

2.1 Définitions

Définition 2.1 (Noyau, image)

Soit $f \in \mathcal{L}(E, F)$.

- 1. Le noyau de f est $Ker(f) = \{x \in E, f(x) = 0_F\} = f^{-1}(\{0_F\}) \subset E$.
- 2. L'image de f est $Im(f) = \{f(x), x \in E\} = f(E) = \{y \in F \mid \exists x \in E, y = f(x)\} \subset F$.

Proposition 2.2

Soit $f \in \mathcal{L}(E, F)$. Alors:

- 1. $0_E \in \operatorname{Ker}(f)$.
- $2. \quad 0_F \in \operatorname{Im}(f).$

Proposition 2.3

Soit $f \in \mathcal{L}(E, F)$. Alors

- 1. Ker(f) est un sous-espace vectoriel de E.
- 2. Im(f) est un sous-espace vectoriel de F.

Remarque.

On retrouve les techniques déjà vues pour déterminer des sous-espaces vectoriels! Vérifiez que vous avez bien compris ce que l'on fait. Faut-il des équivalences? etc...

Théorème 2.4 (CNS d'injectivité et de surjectivité)

Soit $f \in \mathcal{L}(E, F)$. Alors

$$f$$
 injective \iff Ker $(f) = \{0_E\},$

et

$$f$$
 surjective \iff Im $(f) = F$.

Remarque.

Ce théorème est très utile pour l'injectivité. Il suffit de déterminer le noyau pour savoir si f est injective!

2.2 Quelques résultats sur les noyaux et les images

Proposition 2.5

Soient E, F, G trois K-espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors

- 1. $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$, et plus précisément, $\operatorname{Im}(g \circ f) = \operatorname{Im}(g_{|\operatorname{Im}(f)}) = g(\operatorname{Im}(f))$.
- 2. $\operatorname{Ker}(f) \subset \operatorname{Ker}(g \circ f)$.
- 3. $g \circ f = 0 \iff \operatorname{Im}(f) \subset \operatorname{Ker}(g)$.

Proposition 2.6

Soit $f \in \mathcal{L}(E)$. En notant $f^2 = f \circ f$, on a

- 1. $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$.
- 2. $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$.
- 3. $f^2 = 0 \iff \operatorname{Im}(f) \subset \operatorname{Ker}(f)$.

2.3 Antécédents par une application linéaire

Proposition 2.7

Soient $f \in \mathcal{L}(E, F)$, et G un sous-espace vectoriel de E. Le noyau de la restriction $f_{|G}: G \longrightarrow F$ de f à G est

$$\operatorname{Ker}(f_{|G}) = \operatorname{Ker}(f) \cap G.$$

Proposition 2.8

Soient $f \in \mathcal{L}(E, F)$ et $y_0 \in \text{Im}(f)$. Soit $x_0 \in E$ un antécédent de y_0 par f. Alors l'ensemble des antécédents de y_0 par f est

$$x_0 + \operatorname{Ker}(f) = \{x_0 + v \mid v \in \operatorname{Ker}(f)\}\$$

(ce n'est pas un sous-espace vectoriel de E), i.e. $x \in E$ est un antécédent de y par f si et seulement si $x - x_0$ est dans $\mathrm{Ker}(f)$.

Méthode 2.9

Voici des exemples fréquents qui fournissent une technique générale.

1. Soit

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto (x + y - z, 2x - z).$

Alors

$$Ker(f) = \{(x, y, z) \in \mathbb{R}^3, \ x + y - z = 2x - z = 0\} = \{(x, y, z) \in \mathbb{R}^3, \ z = 2x, \ y = x\}$$
$$= \{(x, x, 2x), \ x \in \mathbb{R}\} = \text{vect}((1, 1, 2)).$$

Montrons que Im(f) est \mathbb{R}^2 tout entier. En effet, si $(a,b) \in \mathbb{R}^2$, on a pour $(x,y,z) \in \mathbb{R}^3$

$$f(x, y, z) = (a, b) \iff \begin{cases} x + y - z = a \\ 2x - z = b \end{cases} \iff \begin{cases} y = a + x \\ z = b + 2x \end{cases}$$

qui admet une solution, donc $(a, b) \in \text{Im}(f)$. Cette fonction est donc surjective, non injective.

2. Soit E muni d'une base (e_1,e_2,e_3) , F muni d'une base (f_1,f_2) , et

$$f: E \longrightarrow F$$

 $xe_1 + ye_2 + ze_3 \longmapsto (x + y - z)f_1 + (2x - z)f_2.$

Alors

$$\operatorname{Ker}(f) = \{xe_1 + ye_2 + ze_3 \in E, \ x + y - z = 2x - z = 0\} = \{xe_1 + ye_2 + ze_3 \in E, \ z = 2x, \ y = x\}$$
$$= \{xe_1 + xe_2 + 2xe_3, \ x \in \mathbb{R}\} = \operatorname{vect}(e_1 + e_2 + 2e_3).$$

Montrons que Im(f) est F tout entier. En effet, si $af_1 + bf_2 \in F$, on a pour $(x, y, z) \in \mathbb{R}^3$

$$f(xe_1 + ye_2 + ze_3) = af_1 + bf_2 \iff \begin{cases} x + y - z = a \\ 2x - z = b \end{cases} \iff \begin{cases} y = a + x \\ z = b + 2x \end{cases}$$

qui admet une solution, donc $af_1 + bf_2 \in \text{Im}(f)$. Cette fonction est donc surjective, non injective.

3. Soit

$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$

 $(x,y,z) \longmapsto (x+y-z,2x-z,x+y,z).$

Alors

$$(x, y, z) \in \text{Ker}(g) \iff x + y - z = 2x - z = x + y = z = 0 \iff (x, y, z) = (0, 0, 0),$$

donc

$$Ker(g) = \{(0,0,0)\}$$

et q est injective. Déterminons maintenant Im(q). Soit $(a,b,c,d) \in \mathbb{R}^4$. Pour $(x,y,z) \in \mathbb{R}^3$, on a

$$g(x,y,z) = (a,b,c,d) \iff \begin{cases} x+y-z=a \\ 2x-z=b \\ x+y=c \\ z=d \end{cases} \iff \begin{cases} x=(b+d)/2 \\ y=a+d-(b+d)/2 \\ z=d \\ a+d=c \end{cases},$$

donc

$$\mathrm{Im}(g) = \{(a,b,c,d) \in \mathbb{R}^4, \ a+d=c\} = \{(a,b,c,c-a), \ a,b,c \in \mathbb{R}\} = \mathrm{vect}\Big((1,0,0,-1),(0,1,0,0),(0,0,1,1)\Big).$$

C'est donc un sous-espace vectoriel de dimension 3 de \mathbb{R}^4 , et g n'est pas surjective.

4. Soit E muni d'une base (e_1, e_2, e_3) , F muni d'une base (f_1, f_2, f_3, f_4) , et

$$g: E \longrightarrow F$$

 $xe_1 + ye_2 + ze_3 \longmapsto (x + y - z)f_1 + (2x - z)f_2 + (x + y)f_3 + zf_4.$

Alors

$$xe_1 + ye_2 + ze_3 \in \text{Ker}(g) \iff x + y - z = 2x - z = x + y = z = 0 \iff (x, y, z) = (0, 0, 0),$$

donc

$$Ker(q) = \{0\}$$

et g est injective. Déterminons maintenant Im(g). Soit $af_1+bf_2+cf_3+df_4 \in F$. Pour $xe_1+ye_2+ze_3 \in E$, on a

$$g(xe_1 + ye_2 + ze_3) = af_1 + bf_2 + cf_3 + df_4 \iff \begin{cases} x + y - z = a \\ 2x - z = b \\ x + y = c \\ z = d \end{cases} \iff \begin{cases} x = (b+d)/2 \\ y = a + d - (b+d)/2 \\ z = d \\ a + d = c \end{cases},$$

donc

$$\operatorname{Im}(g) = \{af_1 + bf_2 + cf_3 + df_4 \in F, \ a + d = c\} = \{af_1 + bf_2 + cf_3 + (c - a)f_4\}, \ a, b, c \in \mathbb{R}\} = \operatorname{vect}\left(f_1 - f_4, f_2, f_3 + f_4\right)$$

C'est donc un sous-espace vectoriel de dimension 3 de F, et f n'est pas surjective.

5. On peut refaire le dernier exemple plus rapidement. Soit $af_1 + bf_2 + cf_3 + df_4 \in F$. Pour $xe_1 + ye_2 + ze_3 \in E$, on a

$$g(xe_1 + ye_2 + ze_3) = af_1 + bf_2 + cf_3 + df_4 \iff \begin{cases} x + y - z = a \\ 2x - z = b \\ x + y = c \\ z = d \end{cases} \iff \begin{cases} x = (b+d)/2 \\ y = a + d - (b+d)/2 \\ z = d \\ a + d = c \end{cases},$$

donc

$$\operatorname{Im}(g) = \{af_1 + bf_2 + cf_3 + df_4 \in F, \ a + d = c\} = \{af_1 + bf_2 + cf_3 + (c - a)f_4\}, \ a, b, c \in \mathbb{R}\} = \operatorname{vect}\left(f_1 - f_4, f_2, f_3 + f_4\right)$$

C'est donc un sous-espace vectoriel de dimension 3 de F, et f n'est pas surjective. Lorsque a = b = c = d = 0, le système précédent détermine le noyau, qui est donc $\{0\}$.

3 Projections, symétries

Dans ce paragraphe, on fixe un K-espace vectoriel E.

3.1 Projections

Définition 3.1

Une projection (ou projecteur) est un endomorphisme p de E tel que $p \circ p = p$.

 $p \circ p = p$ signifie que pour tout $x \in E$, p(p(x)) = p(x). Faire une deuxième fois la projection ne change rien.

Proposition 3.2

Soit p une projection. Alors

- 1. $E = \operatorname{Im}(p) \oplus \operatorname{Ker}(p)$
- 2. $Im(p) = \{x \in E, \ p(x) = x\} = Ker(p id_E).$

Remarque.

On dit que p est la projection sur Im(p) et parallèlement à Ker(p).

Remarque.

ATTENTION : si $f \in \mathcal{L}(E)$ et $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$, f n'est pas une projection en général! De même, en général, pour $f \in \mathcal{L}(E)$, $\operatorname{Ker}(f) + \operatorname{Im}(f) \neq E$ et $\operatorname{Ker}(f) \cap \operatorname{Im}(f) \neq \{0\}$.

Proposition 3.3

- 1. Soit p une projection de E, $a \in \text{Im}(p)$ et $b \in \text{Ker}(p)$. Alors p(a+b) = a.
- 2. Réciproquement, soient A et B deux sous-espaces vectoriels supplémentaires de E. L'application

$$\begin{array}{ccc}
E & \longrightarrow & E \\
a+b & \longmapsto & a,
\end{array}$$

où $a \in A$ et $b \in B$ est une projection, de noyan B et d'image A.

Remarque.

Cette application est bien définie puisque $E=A\oplus B$, donc tout élément de E s'écrit de façon unique comme somme d'un élément de A et de B..

Méthode 3.4 (Montrer qu'une application est une projection)

On considère $f \in \mathcal{L}(E)$. Pour montrer que f est une projection, on montre que $f \circ f = f$. On détermine alors $\mathrm{Ker}(f)$ et $\mathrm{Im}(f)$, ce qui donne les éléments caractéristiques de la projection.

3.2 Symétries

Définition 3.5 (Symétries)

Une symétrie de E est un endomorphisme s de E tel que $s \circ s = id_E$.

Les symétries sont donc les involutions de E qui sont linéaires.

Proposition 3.6

Soit s une symétrie de E. Alors $E = \text{Ker}(s - \text{id}_E) \oplus \text{Ker}(s + \text{id}_E)$.

Remarques.

- 1. Rappelons que $\operatorname{Ker}(s \operatorname{id}_E) = \{x \in E, \ s(x) = x\}$ et $\operatorname{Ker}(s + \operatorname{id}) = \{x \in E, \ s(x) = -x\}$.
- 2. On dit que s est la symétrie par rapport à $Ker(s id_E)$ et parallèlement à $Ker(s + id_E)$.

Proposition 3.7

Soient $p, s \in \mathcal{L}(E)$ tels que $s = 2p - \mathrm{id}_E$. Alors :

- 1. s est une symétrie si et seulement si p est une projection.
- 2. Si s est une symétrie et p est une projection, alors $\text{Im}(p) = \text{Ker}(s \text{id}_E)$ et $\text{Ker}(p) = \text{Ker}(s + \text{id}_E)$, i.e. s et p ont mêmes éléments caractéristiques.

Proposition 3.8

- 1. Soit s une symétrie de E, $a \in \text{Ker}(s \text{id}_E)$ et $b \in \text{Ker}(s + \text{id}_E)$. Alors s(a + b) = a b.
- 2. Réciproquement, soient A et B deux sous-espaces vectoriels supplémentaires de E. L'application f

$$\begin{array}{ccc} E & \longrightarrow & E \\ a+b & \longmapsto & a-b, \end{array}$$

où $a \in A$ et $b \in B$, est une symétrie, avec $A = \text{Ker}(f - \text{id}_E)$ et $B = \text{Ker}(f + \text{id}_E)$.

Remarque.

Cette application est bien définie puisque $E=A\oplus B$, donc tout élément de E s'écrit de façon unique comme somme d'un élément de A et de B..

Méthode 3.9 (Montrer qu'une application est une symétrie)

On considère $f \in \mathcal{L}(E)$. Pour montrer que f est une symétrie, on montre que $f \circ f = \mathrm{id}_E$. On détermine alors $\mathrm{Ker}(f-\mathrm{id}_E)$ et $\mathrm{Ker}(f+\mathrm{id}_E)$, ce qui donne les éléments caractéristiques de la symétrie.

4 Image d'une famille libre/génératrice, d'une base par une application linéaire

Dans ce paragraphe, on fixe deux K-espaces vectoriels E et F. Tout se passe comme les familles finies, puisqu'on a toujours des familles à support fini. Entraînez-vous!

Proposition 4.1

Soit $(e_i)_{i\in I}$ une famille de E et $u\in\mathcal{L}(E,F)$. Alors $u(\text{vect}(e_i)_{i\in I})=\text{vect}(u(e_i))_{i\in I}$.

Corollaire 4.2

Soit $(e_i)_{i\in I}$ une famille génératrice de E et $u\in\mathcal{L}(E,F)$.

- 1. La famille $(u(e_i))_{i\in I}$ est une famille génératrice de Im(u).
- 2. L'application u est surjective si et seulement si $(u(e_i))_{i\in I}$ engendre F.

Proposition 4.3

Soit $(e_i)_{i\in I}$ une famille libre de E. Si $u\in\mathcal{L}(E,F)$ est injective, la famille $(u(e_i))_{i\in I}$ est libre.

Corollaire 4.4

Soit $(e_i)_{i\in I}$ une base de E et $u\in\mathcal{L}(E,F)$. Alors

- 1. u est injective, si et seulement si la famille $(u(e_i))_{i\in I}$ est une famille libre de F.
- 2. u est surjective, si et seulement si la famille $(u(e_i))_{i\in I}$ est une famille génératrice de F.
- 3. u est un isomorphisme si et seulement si la famille $(u(e_i))_{i\in I}$ est une base de F.

Théorème 4.5 (Prolongement par linéarité)

Soit $(e_i)_{i\in I}$ une base de E et $(f_i)_{i\in I}$ une famille quelconque de vecteurs de F. Il existe une unique application linéaire $u \in \mathcal{L}(E, F)$ telle que :

$$\forall i \in I, \ u(e_i) = f_i.$$

5 Applications linéaires en dimension finie

Dans ce \S , E est un espace vectoriel de dimension finie n > 0. L'espace vectoriel F n'est pas nécessairement de dimension finie.

5.1 Image d'une famille libre, génératrice. Image d'une base

Dans ce paragraphe, il faut comprendre le comportment d'une application linéaire sur une combinaison linéaire. Les démonstrations sont importantes pour cette compréhension.

Proposition 5.1

Soit (e_1, \ldots, e_p) une famille de vecteurs de E, et $f \in \mathcal{L}(E, F)$. Alors $f(\text{vect}(e_1, \ldots, e_p)) = \text{vect}(f(e_1), \ldots, f(e_p))$

Proposition 5.2

Soit $f \in \mathcal{L}(E, F)$ et (e_1, \dots, e_p) une famille génératrice de E.

- 1. $(f(e_1), \ldots, f(e_p))$ est une famille génératrice de Im(f).
- 2. f est surjective si et seulement si $F = \text{vect}(f(e_1), \dots, f(e_p))$.

Cette proposition peut également s'utiliser avec une base de E, puisque c'est aussi une famille génératrice de E.

Proposition 5.3

Soit (e_1, \ldots, e_p) une famille libre de E. Si $f \in \mathcal{L}(E, F)$ est injective, la famille $(f(e_1), \ldots, f(e_p))$ est libre.

Remarque.

Cette proposition peut également s'utiliser avec une base de E, puisque c'est aussi une famille libre de E.

Théorème 5.4

Soit $f \in \mathcal{L}(E, F)$ et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

- 1. La fonction f est injective si et seulement si la famille $(f(e_1), \ldots, f(e_n))$ est libre dans F.
- 2. La fonction f est surjective si et seulement si la famille $(f(e_1), \ldots, f(e_n))$ est génératrice de F.
- 3. La fonction f est un isomorphisme si et seulement si la famille $(f(e_1), \ldots, f(e_n))$ est une base de F.

Théorème 5.5 (Prolongement par linéarité)

Soit $B = (e_1, \ldots, e_n)$ une base de E, et soient v_1, \ldots, v_n des vecteurs de F. Il existe une et une seule application linéaire $\varphi \in \mathcal{L}(E, F)$ telle que

$$\forall k = 1, \dots, n, \ \varphi(e_k) = v_k.$$

De plus, pour tout $x \in E$ de composantes $(x_1, \ldots, x_n) \in K^n$ dans la base \mathcal{B} , on a

$$\varphi(x) = \varphi\left(\sum_{k=1}^{n} x_k e_k\right) = \sum_{k=1}^{n} x_k \varphi(e_k) = \sum_{k=1}^{n} x_k v_k.$$

En particulier, si $f, g \in \mathcal{L}(E, F)$, alors

$$f = g \iff f(e_k) = g(e_k) \ \forall \ k = 1, \dots, n,$$

i.e. une application linéaire est caractérisée par les images des vecteurs d'une base de E.

Proposition 5.6

Soit $f \in \mathcal{L}(E, F)$.

- 1. Si f est injective, $\dim(E) \leq \dim(F)$.
- 2. Si f est surjective, $\dim(E) \geqslant \dim(F)$ (et en particulier F est de dimension finie).
- 3. Si f est bijective (i.e. f est un isomorphisme), $\dim(E) = \dim(F)$.

- 1. On peut bien entendu utiliser cette propostion par contraposée. Si $f \in \mathcal{C}(E, F)$, et $\dim(E) > \dim(F)$, alors f ne peut pas être injective, et si $\dim(E) < \dim(F)$, alors f ne peut pas être surjective.
- 2. Cette proposition n'est qu'une implication. Elle ne dit bien entendu pas que si $\dim(E) \leq \dim(F)$, toutes les applications linéaires entre E et F sont injectives!!

Proposition 5.7

Soit E un K-espace vectoriel de dimension finie. Un espace vectoriel F est isomorphe à E si et seulement s'il est de dimension finie et $\dim(F) = \dim(E)$. En particulier, tout K-espace vectoriel de dimension n est isomorphe à K^n .

Remarque.

Attention, si $\dim(E) = \dim(F)$ et $f \in \mathcal{L}(E, F)$, il n'y a aucune raison pour que f soit bijective!

Méthode 5.8

Pour montrer qu'une application linéaire est surjective, on peut montrer que l'image d'une base est une famille génératrice de l'espace d'arrivé.

Méthode 5.9

Pour montrer que deux applications linéaires sont égales, il suffit de montrer qu'elles sont égales sur une base.

Méthode 5.10

Le théorème de prolongement par linéarité nous permet de définir une application linéaire qu'en donnant l'image d'une base. Par exemple, on peut définir une application linéaire $f: \mathbb{R}^5 \longrightarrow \mathbb{R}^4$ par

$$f(1,0,0,0,0) = (2,3,1,4), \quad f(0,1,0,0,0) = (-1,2,-3,4), \quad f(0,0,1,0,0) = (3,3,-6,0),$$

 $f(0,0,0,1,0) = (1,2,3,4), \quad f(0,0,0,0,1) = (-2,0,2,0).$

Que vaut alors f((x, y, z, t, w))? On écrit que

$$(x, y, z, t, w) = x(1, 0, 0, 0, 0) + y(0, 1, 0, 0, 0) + z(0, 0, 1, 0, 0) + t(0, 0, 0, 1, 0) + w(0, 0, 0, 0, 1),$$

donc par linéarité de f, on a

$$f((x, y, z, t, w)) = xf((1, 0, 0, 0, 0)) + yf((0, 1, 0, 0, 0)) + zf((0, 0, 1, 0, 0)) + tf((0, 0, 0, 1, 0)) + wf((0, 0, 0, 0, 1))$$

$$= x(2, 3, 1, 4) + y(-1, 2, -3, 4) + z(3, 3, -6, 0) + t(1, 2, 3, 4) + w(-2, 0, 2, 0)$$

$$= (2x - y + 3z + t - 2w, 3x + 2y + 3z + 2t, x - 3y - 6z + 3t + 2w, 4x + 4y + 4t)$$

5.2 Théorème du rang

Définition 5.11 (Rang)

Soit $f \in \mathcal{L}(E, F)$. Le rang de f est la dimension de $\mathrm{Im}(f)$.

Proposition 5.12

Soit $f \in \mathcal{L}(E, F)$, et . Alors

- 1. $\operatorname{rang}(f) \leqslant \min \Big(\dim(E), \dim(F) \Big).$
- 2. Si (e_1, \ldots, e_n) est une base de E, alors rang $(f) = \text{rang}(f(e_1), \ldots, f(e_n))$.

Proposition 5.13

Soit $f \in \mathcal{L}(E, F)$.

- 1. f est injective si et seulement si rang $(f) = \dim(E)$.
- 2. f est surjective si et seulement si rang(f) = dim(F).

Proposition 5.14 (Conservation du rang par les injections/surjections)

Soient E, F, G trois espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- 1. Si f est surjective, rang $(g \circ f) = \text{rang}(g)$.
- 2. Si g est injective, rang $(g \circ f) = \text{rang}(f)$.

Corollaire 5.15 (Conservation du rang par les isomorphismes)

Soient E, F, G trois espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- 1. Si f est un isomorphisme, $rang(g \circ f) = rang(g)$.
- 2. Si g est un isomorphisme, rang $(g \circ f) = \text{rang}(f)$.

Théorème 5.16 (Théorème du rang)

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E, F)$. Alors

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \operatorname{rang}(f).$$

Méthode 5.17

Soit $f \in \mathcal{L}(E)$. Pour déterminer $\operatorname{Ker}(f)$ et $\operatorname{Im}(f)$, on peut, au choix :

1. Résoudre pour tout $y \in F$ l'équation y = f(x) d'inconnue $x \in E$. Les y pour lesquels on a au moins une solution donnent l'image. Le cas y = 0 donne le noyau.

ou

2. Résoudre l'équation f(x) = 0 d'inconnue $x \in E$ pour obtenir le noyau. Déterminer alors $\dim(\operatorname{Ker}(f))$, puis $\operatorname{rang}(f)$ grâce au théorème du rang. Enfin, on détermine $\operatorname{rang}(f)$ -vecteurs dans $\operatorname{Im}(f)$ linéairement indépendants pour obtenir une base de $\operatorname{Im}(f)$. Souvent, on les choisit parmi l'image d'une base de E.

Théorème 5.18

Soient E et F deux espaces vectoriels de dimension finie tels que $\dim(E) = \dim(F)$. Soit $f \in \mathcal{L}(E, F)$. Alors

$$f$$
 injective \iff f surjective \iff f bijective.

Ce résultat est vrai en particulier lorsque $F=E,\ i.e.$ pour les endomorphismes d'un espace vectoriel de dimension finie.

Attention : ce théorème ne dit PAS que si $f \in \mathcal{L}(E,F)$, et que E et F sont de dimension finie, et $\dim(E) = \dim(F)$, alors f est injective et f surjective et f bijective. Il dit que SI f est l'un des trois, alors elle est les deux autres...