On modélise un tuyau d'orgue par un tube cylindrique d'axe Ox, de section S et de longueur L ouvert à l'air libre à ses deux extrémités. Le tuyau contient de l'air à la pression atmosphérique moyenne P_0 . La vitesse du son dans le milieu vaut $c = 340 \text{ m.s}^{-1}$.

On recherche le champ de pression p(x,t) de l'onde dans le tuyau comme une superposition d'ondes stationnaires de la forme $A\cos(\omega t + \phi)\cos(kx + \phi)$.

a-Justifier physiquement la présence d'un nœud de surpression à chaque extrémité du tuyau.

b-Rappeler l'équation vérifiée par p(x,t). En déduire la relation entre k, ω et c.

- c-Montrer que seules certaines ondes stationnaires sont possibles et exprimer leur fréquence f_p en fonction de L, c et un entier p.
- d-Tracer l'allure du spectre du son émis. Identifier la fréquence fondamentale et les harmoniques. Que détermine l'amplitude des harmoniques ?

En musique, la fréquence fondamentale définit le nom de la note jouée par l'instrument. La gamme tempérée est constituée d'octaves.

Chaque octave rassemble douze notes séparées par un demi-ton.

Note	Do	Do#	Ré	Ré#	Mi	Fa	Fa#	Sol	Sol#	La	La#	Si
Fréquence	f ⁽⁰⁾	f ⁽¹⁾	f ⁽²⁾	f ⁽³⁾	f ⁽⁴⁾	f ⁽⁵⁾	f ⁽⁶⁾	f ⁽⁷⁾	f ⁽⁸⁾	f ⁽⁹⁾	f ⁽¹⁰⁾	f ⁽¹¹⁾

Les fréquences des notes sont les termes d'une suite géométrique de raison $2^{1/12}$. Ainsi : $f^{(n+1)} = 2^{1/12}f^{(n)}$. La référence de fréquence est donnée par la fréquence du La₃ de la troisième octave à 440 Hz.

- e-Exprimer la fréquence $f^{(n)}$ en fonction de $f^{(0)}$ dans une octave donnée. En déduire les valeurs numériques des fréquences du do₃, du do₂ et du do₁.
- f-Dans un orgue chaque note n est jouée par un tuyau de longueur L_n . La note la plus grave jouée est un fa $_2$. A quel tuyau correspond sur la photo la note la plus grave ? En déduire sa longueur L_0 . Exprimer la longueur L_n du tuyau jouant la note n en fonction de L_0 et n. Prévoir la longueur du plus petit tuyau de la photo.

6.2 Ondes acoustiques-Exercice 11

a-Chaque extrémité du tuyau débouche à l'air libre. Il n'est donc pas possible de comprimer la dernière tranche d'air car les particules fluides sont libres de sortir. La pression reste égale à P₀.

Donc :
$$p(0,t) = 0$$
 et $p(L,t) = 0$

b-<u>Equation d'onde classique de D'Alembert</u> à une dimension : $\boxed{\frac{\partial^2 p}{\partial x^2}(x,t) = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}(x,t)}$

En reportant $p(x,t) = A\cos(\omega t + \phi)\cos(kx + \phi)$ dans cette équation, on a $= k = \frac{\omega}{c}$

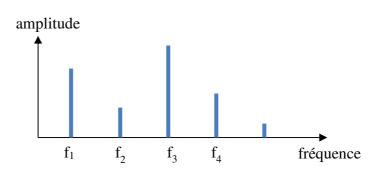
$$c-p(0,t) = 0 \implies \cos\Phi = 0 \implies \Phi = -\frac{\pi}{2}$$
 par exemple

 $p(L,t) = 0 \implies \cos(kL - \frac{\pi}{2}) = 0 \implies \sin(kL) = 0 \implies kL = p\pi \quad \text{p entier positif} \implies \frac{2\pi f}{c} L = p\pi$

Donc les seules ondes planes stationnaires possibles ont pour fréquence : $f_p = p \frac{c}{2L}$

d-Allure du spectre :

L'amplitude des harmoniques détermine <u>le timbre du son.</u>



e-On a :
$$f^{(n)} = 2^{\frac{n}{12}} f^{(0)}$$

Donc:
$$440 = 2^{\frac{9}{12}} f_{do3} = 5 f_{do3} = 262 \text{ Hz}$$
; $f_{do2} = 131 \text{ Hz}$; $f_{do1} = 65.5 \text{ Hz}$

f-La fréquence fondamentale $f_{p=1} = \frac{c}{2L}$ diminue quand L augmente, donc c'est <u>le tuyau le plus grand</u> qui joue le son le plus grave, c'est-à-dire le fa₂.

On a:
$$f_{fa2} = 2^{\frac{5}{12}} f_{do2} = 175 \text{ Hz}$$
 et $f_{fa2} = \frac{c}{2L_0}$ Donc: $L_0 = \frac{c}{2f_{fa2}}$ A.N: $\underline{L_0 = 0.97 \text{ m}}$

Puisque l'indice 0 est attribué au fa₂, on numérote les notes à partir du fa₂, donc : $f^{(n)} = 2^{\frac{n}{12}} f_{fa_2}$

On a par ailleurs:
$$f_{fa2} = \frac{c}{2L_0}$$
 et $f^{(n)} = \frac{c}{2L_n}$

Donc:
$$\frac{c}{2L_n} = 2^{\frac{n}{12}} \frac{c}{2L_0}$$
 D'où: $L_n = \frac{L_0}{2^{\frac{n}{12}}}$

On compte sur la photo 19 tuyaux donc n varie de 0 à 18.

La longueur du plus petit tuyau est :
$$L_{18} = \frac{L_0}{2^{\frac{18}{12}}}$$
 A.N : $\underline{L_{18} = 0.34 \text{ m}}$