DM12 (Espaces euclidiens)

À rendre le lundi 25 mars

Problème 1 (sujet CCINP)

Notations et objectifs

Pour tout n entier naturel supérieur ou égal à 1, on note $\mathcal{M}_n(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{R} et $\mathcal{M}_{n,1}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices colonnes à n lignes à coefficients dans \mathbb{R} .

 $\mathcal{S}_n(\mathbb{R})$ désigne l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$, $\mathcal{O}_n(\mathbb{R})$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ et I_n la matrice identité d'ordre n.

Tout vecteur $x = (x_i)_{1 \le i \le n}$ de \mathbb{R}^n est identifié à un élément X de $\mathcal{M}_{n,1}(\mathbb{R})$ tel que l'élément de la $i^{\text{ème}}$ ligne de X soit x_i . Dans toute la suite, nous noterons indifféremment $X = (x_i)_{1 \le i \le n}$ un élément de $\mathcal{M}_{n,1}(\mathbb{R})$ aussi bien que le vecteur de \mathbb{R}^n qui lui est associé.

Selon le contexte, 0 désigne soit le réel nul, soit la matrice nulle de $\mathcal{M}_n(\mathbb{R})$, soit encore la matrice nulle de $\mathcal{M}_{n,1}(\mathbb{R})$.

 \mathbb{R}^n est muni de son produit scalaire canonique noté $(\cdot|\cdot)_n$ et de la norme associée $\|\cdot\|_n$.

Une matrice carrée réelle M sera dite positive si tous ses coefficients sont positifs ou nuls, et on notera dans ce cas $M \ge 0$. De même un vecteur X de \mathbb{R}^n sera dit positif si toutes ses composantes x_i sont positives ou nulles et on notera aussi $X \ge 0$. L'ensemble des matrices carrées réelles d'ordre n, positives et symétriques est noté $\mathcal{S}_n(\mathbb{R}_+)$.

L'objectif de ce problème est d'étudier des conditions pour lesquelles, étant donnés n nombres réels distincts ou non $\lambda_1, \lambda_2, \ldots, \lambda_n$, il existe une matrice carrée réelle d'ordre n positive et symétrique admettant pour valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_n$ comptées avec multiplicité, c'est-à-dire dont le polynôme caractéristique est égal à $\prod_{k=1}^{n} (X - \lambda_k)$.

Dans la première partie, on considérera quelques exemples simples.

Dans la seconde partie, on montrera que si S est une matrice carrée réelle positive et symétrique de plus grande valeur propre α , alors α est positif, S admet pour la valeur propre α un vecteur propre positif et toute valeur propre λ de S vérifie $|\lambda| \leq \alpha$.

La troisième partie, assez technique, permettra de connaître les valeurs propres d'une matrice carrée réelle positive et symétrique d'ordre n+p construite à partir de deux matrices A et B carrées réelles positives et symétriques d'ordres respectifs n et p dont on connaît les valeurs propres.

Enfin la dernière partie donnera des conditions suffisantes pour qu'il existe une matrice carrée réelle positive et symétrique d'ordre n admettant pour valeurs propres comptées avec multiplicité n réels donnés.

Partie I

- 1. Montrer que si $\lambda_1, \lambda_2, \ldots, \lambda_n$ sont des réels positifs, distincts ou non, il existe une matrice S carrée réelle positive et symétrique d'ordre n et de valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_n$ comptées avec multiplicité.
- 2. (a) Soit M une matrice carrée réelle d'ordre 2 admettant -1 et 1 pour valeurs propres. Montrer que son polynôme caractéristique P est donné par $P(X) = X^2 1$.
 - (b) En déduire une matrice S carrée réelle positive et symétrique d'ordre 2 admettant pour valeurs propres -1 et 1.
- 3. Déterminer une matrice S carrée réelle positive et symétrique d'ordre 3 admettant pour valeurs propres -1,0,1.
- 4. Déterminer une matrice S carrée réelle positive et symétrique d'ordre 4 admettant pour valeurs propres comptées avec multiplicité : -1, -1, 1, 1.
- 5. Montrer qu'il n'existe aucune matrice S carrée réelle positive et symétrique d'ordre 3 admettant pour valeurs propres comptées avec multiplicité : -1, -1, 0.
- 6. (a) Pour a et b réels, on note H la matrice carrée d'ordre n dont les coefficients diagonaux valent tous a et les autres valent b. Déterminer les valeurs propres de H.
 - (b) Une matrice carrée réelle symétrique d'ordre n dont toutes les valeurs propres sont positives ou nulles est-elle nécessairement positive?

Partie II

- 1. Soit $(X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$, $S \in \mathcal{S}(\mathbb{R}_+)$ et $P \in \mathcal{O}_n(\mathbb{R})$. Établir les égalités :
 - (a) $(X|Y)_n = X^{\mathsf{T}}Y = Y^{\mathsf{T}}X$,
 - (b) $X^{\mathsf{T}}SY = (X|SY)_n = (SX|Y)_n$,
 - (c) $||PX||_n = ||X||_n$.
- 2. Soit $(X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$ et $(U,V) \in (\mathcal{M}_{p,1}(\mathbb{R}))^2$. On note Z et T les matrices de $\mathcal{M}_{n+p,1}(\mathbb{R})$ définies par blocs sous la forme

$$Z = \begin{pmatrix} X \\ U \end{pmatrix}, T = \begin{pmatrix} Y \\ V \end{pmatrix}.$$

- (a) Montrer que $(Z|T)_{n+p} = (X|Y)_n + (U|V)_p$.
- (b) Montrer que si X et Y sont orthogonaux dans \mathbb{R}^n et U, V orthogonaux dans \mathbb{R}^p , Z et T sont orthogonaux dans \mathbb{R}^{n+p} .
- (c) La réciproque est-elle vraie?

Dans la suite de cette partie, S désigne une matrice de $S_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ une matrice diagonale semblable à S. On pose $\alpha = \max_{1 \le i \le n} \lambda_i$.

2

3. (a) Montrer que pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, $(DY|Y)_n \leq \alpha ||Y||_n^2$.

- (b) En déduire que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{(SX|X)_n}{\|X\|_n^2} \leq \alpha$
- (c) En utilisant une décomposition du vecteur X sur une base orthonormée de vecteurs propres de S, montrer que cette dernière inégalité est une égalité si et seulement si X est un vecteur propre de S associé à la valeur propre α .
- 4. Soit $E = \{X \in \mathcal{M}_{n,1}(\mathbb{R}) \mid X \geqslant 0\}$, $\Sigma = \{X \in \mathcal{M}_{n,1}(\mathbb{R}) \mid |X||_n = 1\}$, et $C = E \cap \Sigma$. Suivant l'avancement du cours, vous ne pouvez pas forcément traiter les questions suivantes. Vous pouvez :
 - sauter les questions 4.(a) et 4.(b),
 - traiter uniquement le début de la question 4.(c) c'est-à-dire donner l'expression de $\varphi(X)$ en fonction des cæfficients de S et de ceux de X,
 - admettre le résultat de la question 4.(d).

Vous pouvez reprendre normalement à la question 4.(e).

- (a) Montrer que E est un fermé de $\mathcal{M}_{n,1}(\mathbb{R})$.
- (b) Montrer que C est un fermé borné de $\mathcal{M}_{n,1}(\mathbb{R})$.
- (c) Soit $\varphi : \mathcal{M}_{n,1}(\mathbb{R}) \longrightarrow \mathbb{R}$, $X \longmapsto (SX|X)_n$. Donner l'expression de $\varphi(X)$ en fonction des cœfficients de S et de ceux de X; en déduire que φ est continue sur $\mathcal{M}_{n,1}(\mathbb{R})$.
- (d) On pose $\mu = \sup_{X \in C} \varphi(X)$. Justifier l'existence de μ et montrer qu'il existe X_0 appartenant à C tel que $\varphi(X_0) = \mu$.
- (e) Montrer que $\mu \leq \alpha$.
- 5. On suppose dans cette question que $S \ge 0$.
 - (a) Si $X = (x_i)_{1 \le i \le n}$ est un vecteur propre unitaire de S associé à la valeur propre α , on pose $W = (|x_i|)_{1 \le i \le n}$.
 - i. Montrer que W est élément de C.
 - ii. Montrer que $|\varphi(X)| \leq \varphi(W)$.
 - iii. Montrer que $|\alpha| \leq \mu$.
 - (b) En déduire $\alpha \ge 0$, puis que la matrice S admet un vecteur propre positif associé à la valeur propre α .
 - (c) Montrer que pour tout $i \in \{1, 2, ..., n\}, |\lambda_i| \leq \alpha$.

Partie III

Soit n et p deux éléments de \mathbb{N}^* , A, B deux matrices symétriques réelles d'ordres respectifs n et p, (X_1, X_2, \ldots, X_n) une base orthonormée de \mathbb{R}^n formée de vecteurs propres de A, (Y_1, X_2, \ldots, Y_p) une base orthonormée de \mathbb{R}^p formée de vecteurs propres de B et $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_n$ les réels tels que :

$$\forall \ i \in \{1, 2, \dots, n\}, \ AX_i = \alpha_i X_i \ \text{et} \ \forall \ j \ \in \{1, 2, \dots, p\}, \ BY_j = \beta_j Y_j.$$

Pour tout réel s, on note M_s la matrice de $\mathcal{M}_{n+p}(\mathbb{R})$ donnée sous forme de blocs par :

$$M_s = \begin{pmatrix} A & sX_1Y_1^{\mathsf{T}} \\ sY_1X_1^{\mathsf{T}} & B \end{pmatrix} \quad (1)$$

et on considère les vecteurs $(Z_i)_{1 \le i \le n}$ de \mathbb{R}^{n+p} définis par $Z_i = \begin{pmatrix} X_i \\ 0 \end{pmatrix}$, ainsi que les vecteurs $(T_j)_{1 \le j \le p}$ de \mathbb{R}^{n+p} définis par $T_j = \begin{pmatrix} 0 \\ Y_j \end{pmatrix}$.

- 1. Montrer que Z_2, Z_3, \ldots, Z_n et T_2, T_3, \ldots, T_p sont vecteurs propres de M_s et préciser les valeurs propres correspondantes.
- 2. Pour θ réel, on note $V(\theta)$ le vecteur défini par $V(\theta) = \begin{pmatrix} (\cos \theta) X_1 \\ (\sin \theta) Y_1 \end{pmatrix}$
 - (a) Montrer que $V(\theta)$ est unitaire dans \mathbb{R}^{n+p} .
 - (b) Déterminer le spectre de M_0 .
 - (c) On suppose dans cette question $s \neq 0$. On note θ_1 l'unique réel de l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ tel que :

$$\tan \theta_1 = \frac{\beta_1 - \alpha_1 + \sqrt{(\alpha_1 - \beta_1)^2 + 4s^2}}{2s}$$

et on pose $\theta_2 = \theta_1 + \frac{\pi}{2}$.

- i. Montrer que θ_1 est non nul.
- ii. Évaluer le produit $(\tan \theta_1)(\tan \theta_2)$.
- iii. Montrer que θ_1 et θ_2 vérifient l'équation :

$$\alpha_1 + s \tan \theta = \beta_1 + \frac{s}{\tan \theta}$$
 (2)

- iv. En déduire que $V(\theta_1)$ et $V(\theta_2)$ sont vecteurs propres de M_s et exprimer les valeurs propres correspondantes μ_1 et μ_2 en fonction de α_1 , β_1 et s.
- v. Montrer que les vecteurs $V(\theta_1), V(\theta_2), Z_2, Z_3, \ldots, Z_n, T_2, T_3, \ldots, T_p$ forment une base orthonormée de \mathbb{R}^{n+p} et donner l'ensemble des valeurs propres de M_s .
- vi. Montrer que les formules exprimant μ_1 et μ_2 en fonction de α_1 , β_1 et s donnent encore des valeurs propres de M_s lorsque s=0.

Partie IV

Dans cette partie, on se propose de démontrer par récurrence la propriété (P_n) suivante : si $(\lambda_1, \lambda_2, \dots, \lambda_n)$ est un élément de \mathbb{R}^n tel que :

$$\lambda_1 \geqslant 0 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n \text{ et } \lambda_1 + \lambda_2 + \cdots + \lambda_n \geqslant 0$$

alors il existe $A \in \mathcal{S}_n(\mathbb{R}_+)$ tel que $\lambda_1, \lambda_2, \dots, \lambda_n$ soient les valeurs propres de A comptées avec multiplicité.

- 1. Vérifier que (P_1) est vraie.
- 2. Soit $n \in \mathbb{N}^*$ tel que (P_n) soit vraie et soit $(\lambda_1, \lambda_2, \dots, \lambda_n, \lambda_{n+1}) \in \mathbb{R}^{n+1}$ vérifiant :

$$\lambda_1 \ge 0 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge \lambda_{n+1}$$
 et $\lambda_1 + \lambda_2 + \cdots + \lambda_n + \lambda_{n+1} \ge 0$

On pose $a = \lambda_1 + \lambda_{n+1}$.

- (a) Montrer qu'il existe $A \in \mathcal{S}_n(\mathbb{R}_+)$ tel que $a, \lambda_2, \dots, \lambda_n$ soient les valeurs propres de A. Dans la suite de cette question 2, A désignera une telle matrice.
- (b) Montrer que A admet un vecteur propre X_1 unitaire positif associé à la valeur propre a.
- (c) Pour s réel, soit M_s la matrice de $\mathcal{M}_{n+1}(\mathbb{R})$ définie par :

$$\begin{pmatrix} A & sX_1 \\ sX_1^\mathsf{T} & 0 \end{pmatrix}$$

- i. Vérifier que M_s est de la forme (1) : préciser p, B et Y_1 .
- ii. En déduire les valeurs propres de M_s .
- iii. Montrer que si $s = \sqrt{-\lambda_1 \lambda_{n+1}}$, les valeurs propres de M_s sont : $\lambda_1, \lambda_2, \dots, \lambda_n, \lambda_{n+1}$ et conclure.

3. Exemple

- (a) Déterminer le spectre de la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 0 \end{pmatrix}$
- (b) Déterminer une matrice B carrée réelle positive et symétrique d'ordre 4, admettant pour valeurs propres $\lambda_1=9,\ \lambda_2=-1,\ \lambda_3=\lambda_4=-3.$

Problème 2 (sujet Mines)

On passera les questions **15** et **16** (cf chapitre Dérivabilité des fonctions vectorielles) en admettant pour la suite que la fonction φ_X est dérivable sur \mathbb{R} et pour tout $t \in \mathbb{R}$, $\varphi_X'(t) = -2q_u(H_tX)$.

Chaîne de Markov en temps continu

Dans tout le sujet on se fixe un entier naturel $N \geq 2$.

- Soit $A \in \mathcal{M}_{p,q}(\mathbf{R})$. Pour tout $(i,j) \in [1;p] \times [1;q]$, on note A[i,j] le coefficient à la ligne i et la colonne j de A. Par abus, si A est une matrice colonne (q=1) on note A[i] pour A[i,1]. De même si A est une matrice ligne (p=1) on note A[i] pour A[i,1].
- On identifie \mathbf{R}^N avec $\mathcal{M}_{N,1}(\mathbf{R})$. Pour tout $k \in [1; N]$ on note $E_k \in \mathcal{M}_{N,1}(\mathbf{R})$ la matrice colonne dont tous les coefficients sont nuls sauf la k-ième qui vaut 1. On rappelle que (E_1, \ldots, E_N) est une base de $\mathcal{M}_{N,1}(\mathbf{R})$.

On note $U \in \mathcal{M}_{N,1}(\mathbf{R})$ le vecteur colonne dont toutes les coordonnées sont égales à 1. On a donc pour tout $i \in [1; N]$, U[i] = 1.

— On appelle noyau de Markov une matrice $K \in \mathcal{M}_N(\mathbf{R})$ telle que

$$(M_1) \ \forall (i,j) \in [1; N]^2, K[i,j] \ge 0$$

$$(M_2) \ \forall i \in [1; N], \sum_{j=1}^{N} K[i, j] = 1$$

— On appelle probabilité un vecteur ligne $\mu \in \mathcal{M}_{1,N}(\mathbf{R})$ tel que

$$(P_1) \ \forall i \in [1; N], \mu[i] \ge 0$$

$$(P_2) \sum_{j=1}^{N} \mu[j] = 1$$

— On notera $I_N \in \mathcal{M}_N(\mathbf{R})$ la matrice identité.

Préliminaires

1 ▷ Soit $A \in \mathcal{M}_N(\mathbf{R})$. Montrer que A vérifie (M_2) si et seulement si AU = U.

En déduire que si A et B sont deux noyaux de Markov alors AB est encore un noyau de Markov.

On se fixe un noyau de Markov K.

 $2 \triangleright \text{Montrer que pour tout } n \in \mathbb{N}, K^n \text{ est un noyau de Markov.}$

 $\mathbf{3} \triangleright \text{Soit } t \in \mathbf{R} \text{ et } (i,j) \in \llbracket 1; N \rrbracket^2$, justifier que la série $\sum_{n \geq 0} \frac{t^n K^n[i,j]}{n!}$ converge.

On notera $H_t \in \mathcal{M}_N(\mathbf{R})$ la matrice définie par

$$\forall (i,j) \in [1; N]^2, H_t[i,j] = e^{-t} \sum_{n=0}^{+\infty} \frac{t^n K^n[i,j]}{n!}$$

- $\mathbf{4} \triangleright \text{Montrer que pour tout réel } t \in \mathbf{R}_+, H_t \text{ est un noyau de Markov.}$
- **5** ▷ Montrer que pour $(t,s) \in \mathbf{R}_+^2$, $H_{t+s} = H_t H_s$.

On pourra faire apparaître un produit de Cauchy.

Partie 1 - Modélisation probabiliste

On cherche à modéliser un système ayant N états numérotés de 1 à N. À l'instant initial le système est dans l'état 1. Le système est soumis à des impulsions.

On suppose que pour tout $(i, j) \in [1; N]^2$, à chaque impulsion, si le système est dans l'état i, il se retrouve dans l'état j avec une probabilité p_{ij} qui ne dépend que de l'état où il était avant l'impulsion.

Ce système est modélisé par un espace probabilisé (Ω, \mathcal{A}, P) .

Pour tout entier $k \in \mathbb{N}$, on note Z_k la variable aléatoire à valeurs dans [1; N] qui correspond à l'état du sytème après k impulsions. Pour tout $(i,j) \in [1; N]^2$ et tout $k \in \mathbb{N}$ tels que $P(Z_k = i) \neq 0$ on a donc $P(Z_{k+1} = j | Z_k = i) = p_{ij}$. En particulier, cela ne dépend pas de k. De plus, la variable Z_0 est la variable certaine de valeur 1.

On considère la matrice $K \in \mathcal{M}_N(\mathbf{R})$ définie par

$$\forall (i,j) \in [1; N]^2, K[i,j] = p_{ij}$$

- $\mathbf{6} \triangleright \text{Justifier que } K \text{ est un noyau de Markov.}$
- **7** ▷ Soit $n \in \mathbb{N}$. Soit $j \in [1; N]$ montrer que $P(Z_n = j) = K^n[1, j]$.

 On pourra procéder par récurrence.
- 8 > Soit $t \in \mathbf{R}_+$. On suppose que le nombre d'impulsions après un temps t est donné par une variable aléatoire Y_t suivant la loi de Poisson de paramètre t. Pour tout $j \in [1; N]$ on note $A_{t,j}$ l'événement « le système est dans l'état j après un temps t ». Justifier que $P(A_{t,j}) = H_t[1,j]$.

Partie 2 - Étude d'un endomorphisme autoadjoint

Soit E un espace euclidien de dimension N. On note (|) le produit scalaire et || || la norme euclidienne associée. Soit u un endomorphisme autoadjoint de E. On pose $q_u: E \to \mathbf{R}$ défini par $q_u: x \mapsto (u(x)|x)$ et on suppose que pour tout $x \in E$, $q_u(x) \ge 0$.

 $\mathbf{9} \triangleright$ Énoncer le théorème spectral pour l'endomorphisme u. Que peut-on dire des valeurs propres de u?

On suppose que 0 est valeur propre simple de u et on note λ_2 la plus petite valeur propre non nulle de u. On note $p: E \to E$ la projection orthogonale sur la droite vectorielle $\ker(u)$.

10 \triangleright Montrer que pour tout $x \in E$, $q_u(x - p(x)) \ge \lambda_2 ||x - p(x)||^2$.

Partie 3 - Convergence de $H_t[i,j]$

On considère un noyau de Markov K. On suppose que 1 est une valeur propre simple de K.

On suppose qu'il existe une probabilité $\pi \in \mathcal{M}_{1,N}(\mathbf{R})$ telle que :

- (a) Pour tout $j \in [1; N], \pi[j] \neq 0$.
- (b) $\forall (i,j) \in [1; N]^2, \pi[i]K[i,j] = K[j,i]\pi[j];$ on dit que K est π -reversible.

Un rapide calcul montre alors que pour tout réel t positif H_t est aussi un noyau de Markov π -réversible c'est-à-dire que

$$\forall (i,j) \in [1; N]^2, \pi[i]H_t[i,j] = H_t[j,i]\pi[j]$$

On ne demande donc pas de démontrer ce résultat.

Pour finir, pour $X, Y \in \mathcal{M}_{N,1}(\mathbf{R})^2$, on pose

$$\langle X, Y \rangle = \sum_{i=1}^{N} X[i]Y[i]\pi[i]$$

Dans cette dernière partie, on cherche à déterminer pour $(i, j) \in [1; N]^2$ la limite de $H_t[i, j]$ quand t tend vers $+\infty$ et à majorer la vitesse de convergence.

11 \triangleright Montrer que $\pi K = \pi$.

12 ▷ Montrer que $(X,Y) \mapsto \langle X,Y \rangle$ est un produit scalaire sur $\mathcal{M}_{N,1}(\mathbf{R})$.

Dans la suite on note E l'espace l'espace euclidien $\mathcal{M}_{N,1}(\mathbf{R})$ muni de ce produit scalaire.

13 ▷ On considère l'endomorphisme de E défini par $u: X \mapsto (I_N - K)X$. Montrer que $\ker(u) = \operatorname{Vect}(U)$ et que u est un endomorphisme autoadjoint de E.

On admet que pour tout $t \in \mathbf{R}_+$, l'endomorphisme $X \mapsto H_t X$ est aussi un endomorphisme autoadjoint de E.

14 ▷ Montrer que pour tout $X \in E$,

$$q_u(X) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (X[i] - X[j])^2 K[i, j] \pi[i]$$

Que dire des valeurs propres de u?

Soit $X \in E$, on note ψ_X la fonction définie de \mathbf{R} dans E par $\psi_X : t \mapsto H_t X$ et φ_X la fonction définie de \mathbf{R} dans \mathbf{R} par $\varphi_X : t \mapsto ||H_t X||^2$

15 ▷ Justifier que ψ_X est dérivable et que pour tout t dans \mathbf{R} ,

$$\psi_X'(t) = -(I_N - K)H_tX$$

16 \triangleright En déduire que φ_X est dérivable et exprimer $\varphi_X'(t)$ à l'aide de q_u .

On note $p: E \to E$ la projection orthogonale sur $\ker(u)$.

17 ▷ Soit $t \in \mathbf{R}_+$. Montrer que $p(H_tX) = p(X)$.

18 ▷ On pose Y = X - p(X). On note λ la plus petite valeur propre non nulle de u.

Montrer que pour tout réel $t \in \mathbf{R}_+, \varphi_Y'(t) \leq -2\lambda \varphi_Y(t)$.

En déduire que $\forall t \in \mathbf{R}_{+}, ||H_{t}X - p(X)||^{2} \le e^{-2\lambda t}||X - p(X)||^{2}.$

19 $ightharpoonup ext{Soit } i \in [1; N] \text{ et } t \in \mathbf{R}_+. \text{ Montrer que } ||H_t E_i - \pi[i]U|| \le e^{-\lambda t} \sqrt{\pi[i]}.$

20 \triangleright Montrer que pour tout $(i, j) \in [1; N]^2$ et tout $t \in \mathbf{R}_+$,

$$H_t[i,j] - \pi[j] = \sum_{k=1}^{N} (H_{t/2}[i,k] - \pi[k])(H_{t/2}[k,j] - \pi[j])$$

On pourra utiliser la question 5.

21 \triangleright En déduire que pour tout $(i, j) \in [1; N]^2$ et tout $t \in \mathbf{R}_+$,

$$|H_t[i,j] - \pi[j]| \le e^{-\lambda t} \sqrt{\frac{\pi[j]}{\pi[i]}}$$

Déterminer $\lim_{t\to+\infty} H_t[i,j]$.

FIN DU PROBLÈME