Lycée Victor Hugo - Besançon

Algèbre - Chapitre 12 : Applications linéaires Feuille d'exercices

PCSI2 - MATHÉMATIQUES 2023-2024

Exercice 1:

Les applications suivantes sont-elles linéaires? Déterminez leur noyau dans le cas où elles le sont.

1.
$$f:(x,y,z)\mapsto x-y-2z$$
 5. $f:(x,y)\mapsto x+y+1$

5.
$$f:(x,y)\mapsto x+y+1$$

$$2. f: (x,y) \mapsto xy$$

6.
$$f:(x,y)\mapsto (x-y,2x+3y)$$
.

3.
$$f: x \mapsto (-3x, x, 4x)$$

3.
$$f: x \mapsto (-3x, x, 4x)$$
 7. $f: (x, y) \mapsto x^2 + y^2$.

4.
$$f:(x,y,z)\mapsto (x-y,y+z,x-z)$$
 8. $f:(x,y,z)\mapsto (x-y,y+z,x-z)$

8.
$$f:(x,y,z)\mapsto (x-y,y+z,x-z)$$

Exercice 2:

1. Justifiez que les applications ci dessous sont linéaires et précisez leur noyau:

a)
$$\varphi: \mathcal{C}^1(\mathbb{R}) \to \mathcal{C}^0(\mathbb{R})$$
 définie par $\phi(f) = f'$.

b)
$$\psi: \mathcal{C}^0(\mathbb{R}) \to \mathcal{C}^1(\mathbb{R})$$
 définie par $\psi(f): x \mapsto \int_0^x f(t)dt$

- 2. Montrez que $\varphi \circ \psi = Id_{\mathcal{C}^0}$.
- 3. Montrez que malgré tout ni φ , ni ψ ne sont bijectives.

Exercice 3:

Soient $f: E \to F$ et $g: F \to G$ deux applications telles que f est linéaire et surjective, et $g \circ f$ est linéaire.

Montrez que q est linéaire.

Exercice 4:

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$. Soit f définie sur E par f(P) = P + (1-x)P'

- 1. Montrez que f est un endomorphisme de E.
- 2. Déterminez son noyau.

Exercice 5:

Soit $E = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ et F = Vect(-1, 1, 1).

- 1. Montrer que E et F sont des sous espaces vectoriels supplémentaires dans \mathbb{R}^3 .
- 2. Soit p la projection sur E parallèlement à F. Exprimer p((x,y,z)) pour tout $(x, y, z) \in \mathbb{R}^3$.
- 3. Même question avec s la symétrie par rapport à E de direction F.

ightharpoonup Exercice 6:

Soit (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et soit u un endomorphisme défini

$$u(e_1) = e_3, u(e_2) = -e_2 \text{ et } u(e_3) = e_1$$

- 1. Justifiez qu'il n'y a qu'un endomorphisme de K³ vérifiant cette propriété.
- 2. Montrez qu'il s'agit d'une symétrie dont on précisera les caractéristiques.

\triangle Exercice 7:

Soit $E = \mathbb{R}_3[X]$ et f, l'application qui à tout polynôme P de E associe son reste dans la division euclidienne de P par $X^2 + 1$.

- 1. Montrer que f est un endomorphisme de E.
- 2. Montrer que f est une projection.
- 3. Préciser F et G tels que f soit la projection sur F parallèlement à G.

Exercice 8:

Soit E un K espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2id_E = 0$

- 1. Montrez que f est un automorphisme et exprimez f^{-1} en fonction de f et id_E .
- 2. Montrez que $Ker(f-id_E)$ et $Ker(f-2id_E)$ sont supplémentaires dans E.

Exercice 9 :

Soient f et q deux endomorphismes d'un espace vectoriel E tel que $f \circ q = q \circ f$. Montrez qu'alors $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont stables par q.

Exercice 10:

Soit f un endomorphisme d'un \mathbb{K} espace vectoriel E tel que, pour tout $x \in E$, f(x) et x sont colinéaires. Montrez que f est une homothétie.