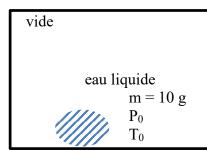
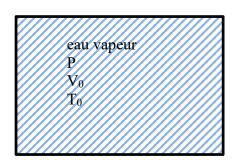
On considère un récipient vide, de volume $V_0 = 100$ litres, thermostaté à $T_0 = 100$ °C.

On y place une ampoule (type ampoule de médicament qui se casse des deux cotés) qui contient 10 g d'eau liquide à $T_0 = 100$ °C et $P_0 = 1$ bar. On casse l'ampoule.


- 1-Déterminer l'état final du système.
- 2-Faire un bilan entropique.


On donne :
$$M = 18 \text{ g.mol}^{-1}$$
 ; $P_{sat}(T_0) = 1 \text{ bar}$; $L_{vap} = 22,6.10^5 \text{ J.kg}^{-1}$

Variation d'entropie entre un état initial i et un état final f :

$$\bullet \ \Delta S_{\text{gaz parfait}} \ = n C_{\text{vmolaire}} \ Ln(\frac{T_f}{T_i}) + n R Ln(\frac{V_f}{V_i}) = \ n C_{\text{pmolaire}} \ Ln(\frac{T_f}{T_i}) - n R Ln(\frac{P_f}{P_i})$$

•
$$\Delta S_{\substack{phase \\ condensée}} = mcLn(\frac{T_f}{T_i})$$

1-Hypothèse : Toute l'eau se vaporise Validité : $P < P_{sat}(T_0)$

Hypothèse: La vapeur d'eau est un gaz parfait

$$PV_0 = \frac{m}{M}RT_0 \quad \Rightarrow \quad P = \frac{mRT_0}{MV_0} \qquad \qquad A.N: \underline{P=1,7.10^4\,Pa} \quad < \quad P_{sat} \quad \ \ \, Hypoth\`ese \ valable$$

2-Pour calculer la variation d'entropie entre l'état initial et l'état final, on décompose la transformation en : eau liquide $(P_0,T_0) \rightarrow \text{eau vapeur } (P_0,T_0) \rightarrow \text{eau vapeur } (P,T_0)$

Pour l'étape 1 :
$$\Delta S_1 = \frac{mL_{\text{vap}}}{T_0}$$
 Pour l'étape 2 : $\Delta S_2 = -\frac{m}{M}RLn\frac{P}{P_0}$

$$\begin{split} & \text{Pour l'étape 1: } \Delta S_1 = \frac{mL_{vap}}{T_0} \qquad \text{Pour l'étape 2: } \Delta S_2 = -\frac{m}{M} R L n \frac{P}{P_0} \\ & \text{Donc: } \boxed{\Delta S_{eau} = \frac{mL_{vap}}{T_0} - \frac{m}{M} R L n \frac{P}{P_0}} \\ \end{split}$$

<u>Premier principe à l'eau</u> : $Q_{thermostat \rightarrow eau} = \Delta U_{eau} = \Delta H_{eau} - \Delta (PV)$

On peut négliger le volume de la phase liquide devant celui de la vapeur. Donc $\Delta(PV) \approx PV_0$

D'où:
$$Q_{\text{thermostat}\rightarrow \text{eau}} = mL_{\text{vap}} - PV_0$$

On en déduit l'entropie échangée :
$$S_{ech} = \frac{Q_{thermostat \rightarrow eau}}{T_0}$$
 $A.N : \underline{S_{ech} = 56 \text{ J.K}^{-1}}$

Le <u>deuxième principe de la thermodynamique</u> donne : $S_{création} = \Delta S$ - S_{ech}

A.N: S_{création} = 13 J.K⁻¹ > 0 donc la transformation est <u>irréversible</u>, ce qui est logique.