INTÉGRATION

Épreuves orales

1 CCP MP (exercice 28)

- 1. La fonction $x \mapsto \frac{e^{-x}}{\sqrt{x^2 4}}$ est-elle intégrable sur $]2, +\infty[?]$
- 2. Soit a un réel strictement positif. La fonction $x \mapsto \frac{\ln x}{\sqrt{1+x^{2a}}}$ est-elle intégrable sur $]0,+\infty[$?

2 Mines-Télécom

Déterminer la partie entière de $\sum_{k=1}^{10^4} \frac{1}{\sqrt{k}}$. (On pourra utiliser une comparaison série-intégrale.)

3 Mines-Télécom

On admet que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

- 1. Montrer que $\int_0^1 \frac{\mathrm{d}t}{\sqrt{-2\ln t}} = \sqrt{2} \int_0^{+\infty} e^{-x^2} \mathrm{d}x$ en posant $x = \sqrt{-\ln t}$.
- 2. Soit $n \in \mathbb{N}^*$. Poser le changement de variable $x = (\cos t)^n$ dans l'intégrale $w_n = \int_0^{\pi/2} (\cos t)^n dt$.
- 3. Montrer que la suite de fonctions de terme général $f_n: t \mapsto \frac{1}{\sqrt{n(t^{-2/n}-1)}}$ converge simplement vers la fonction $t \mapsto \frac{1}{\sqrt{-2 \ln t}}$ sur]0,1[et en déduire, grâce au théorème de convergence dominée, que $w_n \sim \sqrt{\frac{\pi}{2n}}$.

4 CCP MP (exercice 26)

Pour tout entier $n \ge 1$, on pose $I_n = \int_0^{+\infty} \frac{1}{(1+t^2)^n} dt$.

- 1. Justifier que I_n est bien définie pour tout $n \in \mathbb{N}^*$.
- 2. (a) Étudier la monotonie de la suite $(I_n)_{n \in \mathbb{N}^*}$.
 - (b) Déterminer la limite de la suite $(I_n)_{n \in \mathbb{N}^*}$.
- 3. La série $\sum (-1)^n I_n$ est-elle convergente?
- 4. Établir une relation entre I_{n+1} et I_n et en déduire I_n pour tout $n \in \mathbb{N}^*$.

5 TPE/ CCP MP (exercice 19)

- 1. Montrer que $\int_0^{+\infty} \frac{x^2}{e^x 1} dx = 2 \sum_{n=1}^{+\infty} \frac{1}{n^3}$.
- 2. Montrer que $\int_0^1 e^t \ln t dt = -\sum_{n=1}^{+\infty} \frac{1}{n \cdot n!}.$

6 Mines-Ponts (Intégrale de Gauss)

Soit f définie par $f(x) = \int_0^{+\infty} \frac{e^{-x(1+t^2)}}{1+t^2} dt$.

- 1. Déterminer le domaine de définition de f.
- 2. Montrer que f est continue sur \mathbb{R}_+ et de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- 3. En déduire $\int_0^{+\infty} e^{-u^2} du$.

7 Centrale

Éléments de correction : CCP MP (exercice 30)

On admet que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

- 1. Soit $p \in \mathbb{N}$. Montrer que $I_p = \int_0^{+\infty} t^{2p} e^{-t^2} dt$ est bien définie et la calculer.
- 2. Donner la nature de $\sum_{p\geqslant 0} \frac{1}{(2p)!} I_p$.
- 3. Calculer $\int_0^{+\infty} \cos(xt)e^{-t^2} dt$ de deux manières différentes.

8 Mines-Télécom, CCP MP (exercice 50)

On considère la fonction $F: x \mapsto \int_0^{+\infty} \frac{e^{-2t}}{x+t} dt$.

- 1. Prouver que F est définie et continue sur $]0, +\infty[$.
- 2. Prouver que $x \mapsto xF(x)$ admet une limite en $+\infty$ et déterminer la valeur de cette limite. En déduire un équivalent au voisinage de $+\infty$ de F(x).

9 CCINP

- 1. Montrer que $g: x \mapsto \int_0^x e^{-t^2} dt$ est de classe \mathscr{C}^1 sur \mathbb{R} et déterminer sa dérivée.
- 2. Soit $f(x,y) = \exp(x^2 y^2)$ et $F(x) = \int_0^x f(x,t) dt$.
 - (a) Exprimer F en fonction de g
 - (b) Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $F'(x) = f(x,x) + \int_0^x \frac{\partial f}{\partial x}(x,t) dt$.
- 3. Dans cette question, f désigne une fonction de classe \mathscr{C}^1 sur \mathbb{R}^2 à valeurs réelles. Montrer que $\varphi:(x,y)\mapsto \int_0^y f(x,t)\mathrm{d}t$ admet des dérivées partielles et les expliciter.

10 Centrale

On étudie l'intégrale $f(x) = \int_{1/x}^{x^2} \frac{dt}{\sqrt{1+t^3}}$.

- 1. Donner l'ensemble de définition de f.
- 2. Étudier f aux bornes de son ensemble de définition.
- 3. Étudier les variations de f.

11 Centrale

On pose: $\forall n \in \mathbb{N}, u_n = \frac{1}{n!} \int_0^n e^{-t} t^n dt$.

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

12 CCINP

- 1. (a) Montrer que l'intégrale $\int_{1}^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ converge pour $\alpha > 1$.
 - (b) Montrer que l'intégrale $\int_0^1 \frac{\sin t}{t} dt$ converge.
 - (c) Montrer que l'intégrale $\int_1^{+\infty} \frac{\sin t}{t} dt$ converge (on pourra faire une intégration par parties). Dans la suite, on note $I = \int_0^{+\infty} \frac{\sin t}{t} dt$.
- 2. Pour $x \in \mathbb{R}$, on pose $\varphi(x) = \int_0^{+\infty} \frac{\sin(tx)}{t(1+t^2)} dt$.
 - (a) Montrer que φ est bien définie sur \mathbb{R} .
 - (b) Montrer que φ est de classe \mathscr{C}^1 sur \mathbb{R} et exprimer $\varphi'(x)$ sour forme d'une intégrale.
 - (c) Calculer $\varphi'(0)$.
- 3. On admet que φ est de classe \mathscr{C}^2 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $\varphi''(x) = \int_0^{+\infty} \frac{\partial^2 f}{\partial x^2}(x,t) dt$ où $f:(x,t) \mapsto \frac{\sin(tx)}{t(1+t^2)}$.
 - (a) Calculer $\varphi''(x) \varphi(x)$ en fonction de *I* pour tout $x \in \mathbb{R}_{+}^{*}$.
 - (b) En déduire $\varphi(x)$ pour tout $x \in \mathbb{R}$.
 - (c) Étudier la limite de φ' en $+\infty$ et en déduire la valeur de I.

13 Centrale, CCINP

Soit
$$f(x) = \int_0^{+\infty} \frac{\sin(xt)}{e^t - 1} dt$$
.

- 1. Déterminer le domaine de définition D de f.
- 2. Montrer que f est de classe \mathscr{C}^1 sur D.
- 3. Montrer que pour tout $x \in D$, $f(x) = \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$.
- 4. Montrer que pour tout $x \in D \cap]0, +\infty[$ et $N \in \mathbb{N},$ on a :

$$\int_{1}^{N+1} \frac{x}{x^2 + y^2} \mathrm{d}y \leqslant \sum_{n=1}^{N} \frac{x}{x^2 + n^2} \leqslant \int_{0}^{N} \frac{x}{x^2 + y^2} \mathrm{d}y$$

En déduire la limite de f en $+\infty$.

14 Centrale

Soit f une fonction positive, continue et décroissante de]0,1] dans \mathbb{R} . On pose $S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$.

Montrer que l'intégrale $\int_0^1 f$ converge si et seulement si la suite (S_n) converge et dans ce cas, montrer que $\lim_{n\to+\infty} S_n = \int_0^1 f$.