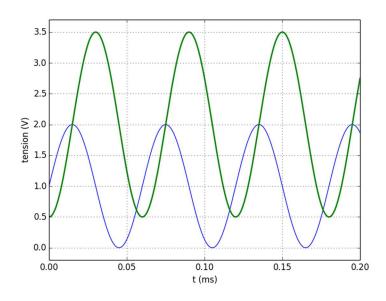
On considère la fonction de transfert :
$$\underline{H} = \frac{H_0}{1 - \frac{\omega^2}{\omega_0^2} + jD\frac{\omega}{\omega_0}}$$

1-Tracer le diagramme de Bode en gain et en phase. Quelle est la nature du filtre ?

2-On observe l'écran d'oscilloscope ci-dessous où la tension de sortie est en trait gras. En déduire H_0 , ω_0 et D.



1-En basse fréquence $\omega << \omega_0: \ \underline{H} \approx H_0$.

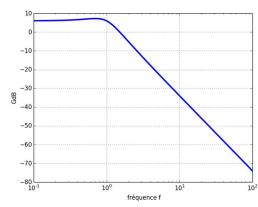
Donc: $G_{dB} = 20logH_0$ et $\varphi = 0$

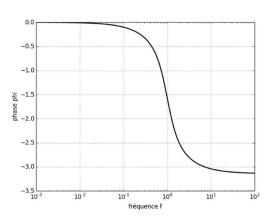
Pour $\omega = \omega_0$: $\underline{H} = \frac{H_0}{jD}$.

Donc : $G_{dB} = 20log(H_0/D)$ et $\phi = -\pi/2$

En haute fréquence $\omega >> \omega_0$: $\underline{H} \approx -\frac{H_0\omega_0^2}{\omega^2}$. Donc : $G_{dB} = 20log(H_0\omega_0^2) - 40log\omega$ et $\phi = -\pi$

Filtre passe-bas d'ordre 2.





2-• La composante continue vaut 1V en entrée et 2V en sortie. Donc $\underline{H_0 = 2}$.

• La sortie est en retard de phase de $\pi/2$ par rapport à l'entrée. Donc $\omega = \omega_0$. On lit 2,5 périodes en 0,15 ms. Donc $T_0 = 6.10^{-5}$ s. D'où : $\omega_0 = 2\pi/T_0$. A.N : $\underline{\omega_0} = 1,05.10^5$ rad.s⁻¹.

• A cette pulsation, l'amplitude de l'entrée vaut 1V et celle de la sortie 1,5 V. Donc $\frac{H_0}{D}$ = 1,5

D'où : D = 1,33