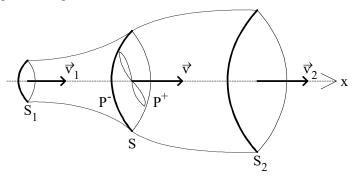
Une éolienne prélève une fraction de l'énergie cinétique du vent de masse volumique $\mu = 1,225 \text{ kg/m}^3$, en balayant une surface d'aire S normale à la direction Ox du vent. A l'extérieur du tube de courant (en pointillés) s'appuyant sur S et limité par les sections droites d'aires S_1 et S_2 , le fluide a une pression uniforme P_0 et n'est pas affecté par le mouvement du rotor de l'éolienne.



On admettra qu'un régime permanent s'établit et que la vitesse du vent est :

- $\vec{v}_1 = v_1 \vec{u}_x$ loin en amont au niveau de la section S_1
- $\vec{v}_2 = v_2 \vec{u}_x$ loin en aval au niveau de la section S_2
- $\vec{v} = v\vec{u}_{x}$ au niveau de la section S du rotor

et enfin que la vitesse du vent et la pression sont uniformes dans toute section droite du tube. On négligera les forces de pesanteur du fluide.

- 1-L'écoulement de l'air est supposé incompressible. Justifier cette hypothèse.
- 2-Etablir une relation entre S₁, S₂, v₁ et v₂ et une relation entre S₁, S, v₁ et v. Justifier l'évasement du tube de courant au niveau du rotor.
- 3-Exprimer, en fonction de μ , S_1 , v_1 et v_2 , la force \vec{F} exercée par le vent sur le rotor à l'aide d'un bilan de quantité de mouvement pour un système à définir précisément.
- 4-Pourquoi l'écoulement ne peut-il pas être considéré comme parfait au voisinage immédiat du rotor ? Calculer, en fonction de μ , v_1 et v_2 , la différence des pressions P^- et P^+ de part et d'autre du rotor dans son voisinage immédiat.
- 5-Exprimer, en fonction de S, P et P+, la force \vec{F} exercée par le vent sur le rotor à l'aide d'un bilan de quantité de mouvement pour un système à définir précisément.
- 6-Déduire des questions précédentes la vitesse v de l'air au niveau du rotor.
- 7-A l'aide d'un bilan d'énergie cinétique pour un système à définir précisément, exprimer la puissance P prélevée par l'éolienne en fonction de μ , S, v_1 et $\alpha = v/v_1$. Pour quelle valeur de α cette puissance est-elle maximale ? Exprimer P_{max} en fonction de μ , S et v_1 .
- 8-Exprimer, en fonction de α , le rendement de l'éolienne défini par $\eta = P/P_i$ où P_i est la puissance cinétique incidente reçue par la surface S en l'absence d'éolienne. Que vaut η_{max} (formule de Betz des éoliennes) ?

4.8 Bilans macroscopiques-Exercice 5

- 1-L'écoulement de l'air est incompressible si : $V_{air} << c_{son} \approx 340 \ m.s^{-1}$
- 2-Ecoulement <u>incompressible</u> => <u>conservation du débit volumique</u> :

$$q_v = S_1 v_1 = S_v = S_2 v_2$$

Le fluide est freiné car l'hélice prélève une partie de son énergie cinétique : $v < v_1$ Donc $S > S_1$: le tube de courant s'évase

3-Système ouvert (S) : l'air entre S_1 et S_2 Système fermé (S*) : $(S)_t + dm_e = (S)_{t+dt} + dm_s$

$\frac{Ecoulement\ stationnaire}{dm_e=dm_s=q_mdt=\mu q_vdt}$

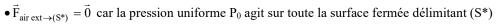
Loi de la quantité de mouvement à (S*):

$$\begin{split} \frac{d\vec{P}_{(S^*)}}{dt} &= \vec{F}_{ext \rightarrow (S^*)} = \vec{F}_{rotor \rightarrow (S^*]} + \vec{F}_{air\,ext \rightarrow (S^*)} \\ \frac{d\vec{P}_{(S^*)}}{dt} &= \frac{\vec{P}_{(S)}\left(t + dt\right) + \vec{P}_{dm_s} - \vec{P}_{(S)}\left(t\right) - \vec{P}_{dm_e}}{dt} \end{split}$$

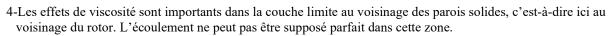
$$\frac{d\vec{P}_{(S^*)}}{dt} = \frac{\vec{P}_{dm_s} - \vec{P}_{dm_e}}{dt} \text{ car régime stationnaire}$$

$$\frac{d\vec{P}_{(S^*)}}{dt} = \frac{dm_s \vec{v}_2 - dm_e \vec{v}_1}{dt} = q_m (\vec{v}_2 - \vec{v}_1)$$

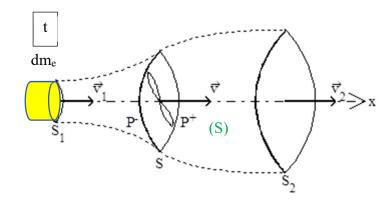
On a :
$$\bullet \vec{F}_{rotor \rightarrow (S^*]} = -\vec{F}$$

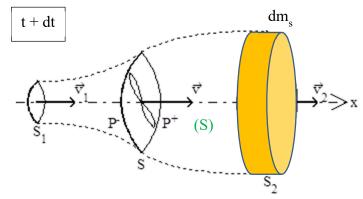


Donc:
$$\vec{F} = \mu v_1 S_1(\vec{v}_1 - \vec{v}_2) = \mu v_1 S_1(v_1 - v_2) \vec{u}_x$$



De part et d'autre du rotor on peut supposer l'écoulement parfait et appliquer la relation de Bernoulli :





$$\begin{split} &P(A_1) + \frac{1}{2}\mu v^2(A_1) = P(A^-) + \frac{1}{2}\mu v^2(A^-) &\implies P^- = P_0 + \frac{1}{2}\mu v_1^2 - \frac{1}{2}\mu v^2 \\ &P(A_2) + \frac{1}{2}\mu v^2(A_2) = P(A^+) + \frac{1}{2}\mu v^2(A^+) &\implies P^+ = P_0 + \frac{1}{2}\mu v_2^2 - \frac{1}{2}\mu v^2 \\ &\text{Donc}: \boxed{P^- - P^+ = \frac{1}{2}\mu(v_1^2 - v_2^2)} \end{split}$$

4.8 Bilans macroscopiques-Exercice 5

5- Système ouvert (S) : la fine tranche d'air autour de l'hélice

Système fermé (S^*) : $(S)_t + dm_e = (S)_{t+dt} + dm_s$

Ecoulement stationnaire:

 $dm_e = dm_s = q_m dt = \mu q_v dt \label{eq:me}$

Loi de la quantité de mouvement à (S*):

$$\frac{d\vec{P}_{(S^*)}}{dt} = \vec{F}_{ext \rightarrow (S^*)} = \vec{F}_{rotor \rightarrow (S^*]} + \vec{F}_{air\,ext \rightarrow (S^*)}$$

$$\frac{d\vec{P}_{(S^*)}}{dt} = \frac{\vec{P}_{(S)}(t+dt) + \vec{P}_{dm_s} - \vec{P}_{(S)}(t) - \vec{P}_{dm_e}}{dt}$$

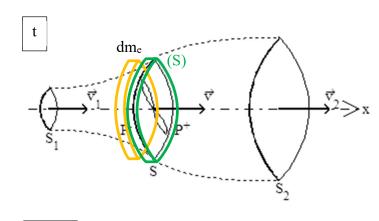
$$\frac{d\vec{P}_{(S^*)}}{dt} = \frac{\vec{P}_{dm_s} - \vec{P}_{dm_e}}{dt} = \frac{dm_s\vec{v} - dm_e\vec{v}}{dt} = \vec{0}$$

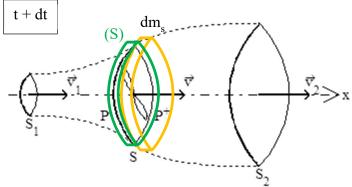
car dm_e et dm_s ont la même vitesse v par conservation du débit volumique de part et d'autre du plan de l'hélice

On a:
$$\bullet \vec{F}_{rotor \to (S^*]} = -\vec{F}$$

$$\bullet \vec{F}_{air ext \to (S^*)} = (P^- - P^+) S\vec{u}_x$$

Donc:
$$\vec{F} = (P^- - P^+)S\vec{u}_x$$





6-On identifie les deux expressions de \vec{F} :

$$\mu v_1 S_1(v_1 - v_2) \vec{u}_x = \frac{1}{2} \mu (v_1^2 - v_2^2) S \vec{u}_x \implies \mu v S(v_1 - v_2) = \frac{1}{2} \mu (v_1 - v_2)(v_1 + v_2) S \implies v = \frac{1}{2} (v_1 + v_2)$$

7-On reprend le système de la question 3 et on lui applique le <u>théorème de l'énergie cinétique</u> :

$$dE_{c(S^*)} = \delta W_{ext \rightarrow (S^*)} + \delta W_{int} \\ = > \frac{1}{2} dm_s v_2^2 - \frac{1}{2} dm_e v_1^2 \\ = \delta W_{air\,amont \rightarrow dm_e} \\ + \delta W_{air\,aval \rightarrow dm_s} \\ + \delta W_{rotor \rightarrow (S^*)} + \delta W_{int} \\ = > \frac{1}{2} dm_s v_2^2 - \frac{1}{2} dm_e v_1^2 \\ = \delta W_{air\,amont \rightarrow dm_e} \\ + \delta W_{air\,aval \rightarrow dm_s} \\ + \delta W_{rotor \rightarrow (S^*)} + \delta W_{int} \\ = > \frac{1}{2} dm_s v_2^2 - \frac{1}{2} dm_e v_1^2 \\ = \delta W_{air\,amont \rightarrow dm_e} \\ + \delta W_{air\,aval \rightarrow dm_s} \\ + \delta W_{rotor \rightarrow (S^*)} + \delta W_{int} \\ = > \frac{1}{2} dm_s v_2^2 - \frac{1}{2} dm_e v_1^2 \\ = \delta W_{air\,amont \rightarrow dm_e} \\ + \delta W_{air\,aval \rightarrow dm_s} \\ + \delta W_{rotor \rightarrow (S^*)} + \delta W_{int} \\ = \frac{1}{2} dm_s v_2^2 - \frac{1}{2} dm_e v_1^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_2^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_1^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_1^2 + \frac{1}{2} dm_e v_1^2 \\ = \frac{1}{2} dm_e v_1^2 + \frac{1}$$

$$On~a:~\delta W_{air~amont \rightarrow dm_e} = P_0 S_1 v_1 dt~;~\delta W_{air~aval \rightarrow dm_s} = -P_0 S_2 v_2 dt = -\delta W_{air~amont \rightarrow dm_e}~car~S_1 v_1 = S_2 v_2 dt = -\delta W_{air~amont \rightarrow dm_e}$$

$$\delta \mathbf{W}_{\mathrm{rotor} \rightarrow (\mathbf{s}^*)} = P_{\mathrm{rotor} \rightarrow (\mathbf{S}^*)} \mathbf{dt} = -P_{(\mathbf{S}^*) \rightarrow \mathrm{rotor}} \mathbf{dt} = -P \mathbf{dt}$$

 $\delta W_{int} = 0~$ car l'écoulement est parfait et incompressible

Donc:
$$\frac{1}{2}q_{m}dt(v_{2}^{2}-v_{1}^{2}) = -Pdt$$

Donc:
$$P = \frac{1}{2}q_{m}(v_{1}^{2} - v_{2}^{2}) = \frac{1}{2}\mu Sv(v_{1} - v_{2})(v_{1} + v_{2}) = \frac{1}{2}\mu Sv(v_{1} - (2v - v_{1})).2v = 2\mu Sv^{2}(v_{1} - v_{2})(v_{1} + v_{2}) = \frac{1}{2}\mu Sv(v_{1} - (2v - v_{1})).2v = 2\mu Sv^{2}(v_{1} - v_{2})(v_{1} + v_{2}) = \frac{1}{2}\mu Sv(v_{1} - (2v - v_{1})).2v = 2\mu Sv^{2}(v_{1} - v_{2})(v_{1} + v_{2}) = \frac{1}{2}\mu Sv(v_{1} - (2v - v_{1})).2v = 2\mu Sv^{2}(v_{1} - v_{2})(v_{1} + v_{2})(v_{1} + v_{2}) = \frac{1}{2}\mu Sv(v_{1} - (2v - v_{1})).2v = 2\mu Sv^{2}(v_{1} - v_{2})(v_{1} + v_{2})(v_{1} + v_{2}) = \frac{1}{2}\mu Sv(v_{1} - (2v - v_{1})).2v = 2\mu Sv^{2}(v_{1} - v_{2})(v_{1} + v_{2}$$

En posant
$$\alpha = v/v_1$$
, on a : $P = 2\mu S\alpha^2 (1-\alpha)v_1^3$

$$\frac{dP}{d\alpha} = 0 \text{ pour } \underline{\alpha = 2/3}. \text{ On calcule alors : } P_{\text{max}} = \frac{8}{27} \mu \text{Sv}_1^3$$

8- P_i est l'énergie cinétique du vent de vitesse v_1 traversant la surface S pendant 1 s: $P_i = \frac{1}{2} \mu S v_1 \cdot v_1^2 = \frac{1}{2} \mu S v_1^3$

D'où le rendement :
$$\eta = \frac{P}{P_i} = \frac{2\mu S\alpha^2 (1-\alpha)v_1^3}{\frac{1}{2}\mu Sv_1^3}$$
 soit : $\boxed{\eta = 4\alpha^2 (1-\alpha)}$

Le rendement est maximum pour $\alpha = 2/3$, il vaut : $\eta = 16/27 = 59 \%$