3.3 Diffusion thermique-Exercice 11

Un local de température initiale T_i est chauffé par un système de puissance P. Il est séparé de l'extérieur de température T_0 par des murs de résistance thermique totale R.

La capacité thermique du système {mur + local} est C.

a-Déterminer la température T(t) du local.

b-Représenter l'allure de T(t)

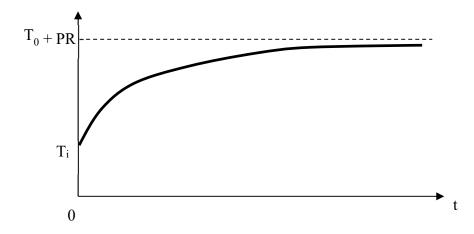
c-Déterminer la température finale atteinte. Au bout de combien de temps est-elle atteinte ?

a-Premier principe au local entre t et t + dt: $dU = \delta Q_{reque par chauffage} - \delta Q_{perdue à travers les murs}$

Soit :
$$CdT = Pdt - \Phi_{perdu}dt$$

$$C\frac{dT}{dt} = P - \frac{T - T_0}{R}$$

$$\frac{dT}{dt} + \frac{T}{RC} = \frac{P}{C} + \frac{T_0}{RC}$$


Solution: $T(t) = Ae^{-\frac{\tau}{\tau}} + T_0 + PR$

on pose $\tau = RC$

$$A t = 0 : T(0) = T_i \text{ donc } A = T_i - T_0 - PR$$

Finalement:
$$T(t) = (T_0 + PR)(1 - e^{-\frac{t}{\tau}}) + T_i e^{-\frac{t}{\tau}}$$

b-

 $c\text{-}T_{finale} = T_0 + PR$ atteint au bout de 5τ