BREVET DE TECHNICIEN SUPERIEUR

SYSTEMES ÉLECTRONIQUES

SESSION 2007

EPREUVE : PHYSIQUE APPLIQUÉE

Calculatrice à fonctionnement autonome autorisée conformément à la circulaire n°991836 du 16/11/99.

Tout autre matériel est interdit

SESSION 2007	CODE: SEE 4 PA		
B.T.S. SYSTEMES ELECTRONIQUES			
EPREUVE : PHYSIQUE APPLIQUEE			
Durée: 4 heures	Coefficient: 4		

L'étude est basée sur un système de mesure de niveau de liquide isolant dans un réservoir mobile.

Le capteur capacitif est inséré dans un oscillateur quasi-sinusoïdal dont il fait varier la fréquence lorsque la variation de niveau de liquide dans le réservoir modifie sa capacité. Le signal de sortie de l'oscillateur mis en forme est traité numériquement par comptage puis filtrage numérique.

Algorithme : compte le nombre de périodes d'horloge dans une période de l'oscillateur

Le problème est constitué de trois parties indépendantes :

- 1. Etude du capteur et de l'oscillateur.
- 2. Traitement numérique de l'information.
- 3. Etude de l'alimentation.

1. Etude du capteur et de l'oscillateur.

1.1. Etude du capteur capacitif.

Le capteur se présente sous la forme d'une tige cylindrique constituée par deux armatures métalliques concentriques et immergée verticalement dans le liquide. Lorsque le réservoir n'est pas plein, la partie inférieure se trouve dans le liquide et la partie supérieure dans l'air. La hauteur de liquide par rapport à l'extrémité inférieure de la tige sera notée h et la hauteur totale du capteur L.

Nous pouvons donc considérer le capteur sans câblage comme équivalent à un condensateur formé de deux parties : une avec pour diélectrique le liquide et l'autre l'air. La capacité de chaque partie s'exprime par la relation :

$$C_x = \frac{\varepsilon_0 \varepsilon_r 2\pi x}{\ln\left(\frac{r_2}{r_1}\right)}$$

x représente la hauteur de la partie considérée,

 ε_0 : la permittivité du vide,

 ε_r la permittivité relative du diélectrique (liquide ou air) par rapport au vide.

Nous écrirons ϵ_{r_air} , pour la permittivité relative de l'air et ϵ_{r_liq} , pour la permittivité relative du liquide et nous poserons :

$$b = \frac{\varepsilon_0 2\pi}{\ln\left(\frac{r_2}{r_1}\right)}$$

Ce capteur présentant des faibles capacités, il faudra prendre en compte la capacité parasite équivalente au câblage entre le capteur et l'oscillateur.

Figure 1.2.

Figure 1.3.

1.1.1. Exprimer la capacité C_{liq} de la partie immergée du capteur en fonction de h, b et ϵ_{r_liq} .

- 1.1.2. Exprimer la capacité C_{air} de la partie à l'air du capteur en fonction de L, h, b et $\epsilon_{r_{air}}$.
- 1.1.3. Exprimer la capacité totale C du capteur seul (sans tenir compte de la capacité parasite C_c due au câblage) en fonction de C_{liq} et C_{air} puis en fonction de L, h, b, ϵ_{r_liq} et ϵ_{r_air} .
- 1.1.4. Mettre C sous la forme C = a h + C_0 , en précisant les expressions de a et C_0 .

- 1.1.5. En considérant la capacité équivalente C_c au câblage entre le capteur et l'oscillateur, exprimer la capacité totale C_1 avec câblage en fonction de C et C_c .
- 1.1.6. En déduire les expressions des capacités C_{1min} et C_{1max} de C₁ pour lesquelles le capteur est soit à sec, soit totalement immergé en fonction de a, L, C₀ et C_c.

Par la suite nous prendrons C_{1min} = 50 pF et C_{1max} = 100 pF

1.2. Etude simplifiée de l'oscillateur.

Nous étudierons les conditions d'oscillation à partir du schéma simplifié ci-dessous. Les amplificateurs opérationnels seront considérés comme idéaux.

1.2.1. Indiquer dans le tableau ci-dessus quelles sont les différentes fonctions réalisées autour des amplificateurs opérationnels: AO1 AO2 et AO3.

	AO1	AO2	AO3
Fonction			
réalisée			

1.2.2. Etablir les transmittances complexes : $A_1(j\omega) = \frac{v_1}{v_0}$ $A_2(j\omega) = \frac{v_2}{v_1}$ $A_3(j\omega) = \frac{v_3}{v_2}$

La réponse sera portée dans le tableau ci-dessous.

$$A_1(j\omega) = \frac{V_1}{\underline{V_0}} = \qquad \qquad A_2(j\omega) = \frac{V_2}{\underline{V_1}} = \qquad \qquad A_3(j\omega) = \frac{V_3}{\underline{V_2}} =$$

1.2.3. Indiquer, dans le tableau suivant, la différence de phase 0 entre les tensions de sortie et d'entrée de chaque étage, autrement dit l'argument de la transmittance correspondante, en radians et en degrés :

	étage 1	étage 2	étage 3
en rad	Φ _{V1/V0} =	Φ _{V2/V1} =	Φ _{V3/V2} =
en °	Φ _{V1/V0} =	Φ _{V2/V1} =	Φ _{V3/V2} =

- 1.2.4. Si on met la fonction de transfert complexe de la boucle ouverte de l'oscillateur <u>A(j</u> ω) = $\frac{V_3}{V_0}$, à quelle condition sur <u>A(j</u> ω) peut-on obtenir une oscillation sinusoïdale ?
- 1.2.5. En déduire une condition sur l'argument Arg <u>A(j</u> ω) et une autre sur le module A(ω).

- 1.2.6. Montrer, à partir des résultats du 1.2.3, que la condition sur l'argument Arg <u>A(j</u> ω) est satisfaite pour obtenir une oscillation.
- 1.2.7. Exprimer <u>A(j</u> ω) et en déduire la pulsation ω_0 , la fréquence f₀ et la période d'oscillation T₀ en fonction de R₁, R₂, R₃, R₄, C₁ et C₂, pour lesquelles la condition sur le module A(ω) est satisfaite.

1.2.8. Rayer les indices inutiles _{min} ou _{max}. et calculer les périodes et fréquences d'oscillation pour le capteur à sec et pour le capteur complètement immergé : On donne : $R_1 = 390k\Omega$; $R_2 = 62k\Omega$; $R_3 = R_4$ et $C_2 = 330pF$.

Capteur à sec	$C_1 = C_{1\min ou max} =$	T _{min ou max} =	f _{0min ou max} =
Capteur immergé	$C_1 = C_{1min ou max} =$	T _{min ou max} =	f _{0 min ou max} =

1.3. Mise en forme.

L'oscillation sinusoïdale est mise sous forme d'un signal rectangulaire pour assurer le traitement numérique par le microcontrôleur.

Les tensions de saturation de l'AOP seront assimilées aux valeurs des tensions d'alimentation \pm Vcc avec Vcc = 9V.

- 1.3.1. Etablir l'expression de $u_d(t)$ en fonction de $v_3(t)$, $v_s(t)$, R_5 et R_6 .
- 1.3.2. Déterminer les expressions littérales des seuils de basculement.

1.3.3. Calculer les valeurs des seuils de basculement pour $R_6 = 100.R_5$ et tracer la caractéristique de transfert v_s en fonction de v_3 sur la *figure 1.6*. Vous préciserez les sens de basculement sur le tracé.

Figure 1.6. Caractéristique de transfert v_s en fonction de v_3 :

1.4 Limitation d'amplitude de l'oscillateur :

Le schéma complet de l'oscillateur est donné figure 1.8. Une limitation d'amplitude par diodes zener a été ajoutée sur le second étage, et un condensateur supplémentaire sur le troisième étage permet d'assurer le démarrage de l'oscillateur.

Il s'agit, dans cette partie, de montrer l'intérêt d'une limitation plus douce de l'amplitude en évitant la saturation des amplificateurs opérationnels AOI, AO2 et AO3.

L'étude sera effectuée pour une valeur intermédiaire C1 = 65pF, pour laquelle la fréquence théorique d'oscillation est f_{0th} = 7,0 kHz.

1.4.1. A partir des relevés de $v_3(t)$ sur la figure 1.9., mesurez les fréquences f_{0z} et f_0 obtenues avec et sans utilisation des diodes zener.

1.4.2. Comparer ces deux fréquences avec la fréquence théorique f_{0th}. Donner une explication pratique pour justifier les inégalités.

Figure 1.8.

Figure 1.9.

Pour la suite, les spectres d'amplitude de $v_3(t)$ sont calculés en dBV, c'est à dire qu'une composante spectrale à 0 dBV est équivalente à une valeur efficace de 1 V.

- 1.4.3. Comment peut-on expliquer l'absence d'harmoniques pairs sur les spectres de v₃(t) de la *figure 1.10.* ?
- 1.4.4. Tracer les spectres de $v_3(t)$ de la *figure 1.10.* en calculant les valeurs efficaces des raies principales en volts. On se limitera aux harmoniques dont l'atténuation par rapport au fondamental est inférieure à 30dB.
- 1.4.5. Déduire des spectres obtenus le taux de distorsion harmonique D en %. <u>Rappel</u> : Définition du taux de distorsion harmonique :

 $D = \frac{valeur\ efficace\ des\ harmoniques}{valeur\ efficace\ du\ fondamental}$

1.4.6. Compléter le tableau suivant et conclure sur l'intérêt de la limitation d'amplitude par diodes zener.

	Fréquence d'oscillation	Taux de distorsion
Etude théorique	7,0kHz	0.0%
Sans diode zener		
Avec diodes zener		

Figure 1.10.

Le réservoir en mouvement autour d'une position moyenne que l'on considère comme horizontale engendre sur le capteur des variations de niveau qu'il faut éliminer par traitement numérique.

Ce traitement se fait en deux étapes :

- moyennage avec sous-échantillonnage par 100, c'est à dire que l'on conserve une valeur moyennée pour 100 valeurs acquises ; cette partie du traitement permet d'éliminer les variations rapides du signal ;

- moyennage sur 16 échantillons résultats de la première étape ; cette partie assure l'élimination des variations plus lentes du signal dues au mouvement du réservoir.

Nous n'étudierons que la seconde partie du traitement numérique.

2.1. Etude temporelle du filtre numérique.

Pour mettre en évidence l'effet de moyennage, nous étudierons un algorithme simplifié de moyenne sur 4 échantillons :

 $y_n = (x_n + x_{n-1} + x_{n-2} + x_{n-3})/4$

où x_{n-m} représente l'échantillon d'entrée retardé de m périodes d'échantillonnage et y_n l'échantillon de sortie à l'instant $n.T_e$.

2.1.1. Représenter une structure de réalisation de cet algorithme avec les opérateurs élémentaires : addition ou soustraction, multiplication par une constante et mémorisation (retard de T_e).

2.1.2. De quel type de filtre numérique s'agit-il et quelle est sa propriété fondamentale relative à la stabilité ?

2.1.3. Pour déterminer la réponse à un échelon d'entrée $[x_n = 1 \text{ si } n \ge 0, \text{ sinon } x_n = 0]$, calculer y_n pour $-1 \le n \le 5$ et tracer sur le graphe réponse 2.1, la courbe y_n en fonction de $n.T_e$.

ce

Figure 2-1 : Graphe réponse à la question 2.1.3

- 2.1.4. Déduire de l'allure de la courbe, en justifiant votre réponse, la nature du filtrage réalisé.
- 2.1.5. Une variation non significative du niveau de liquide dans le réservoir peut être assimilée à une entrée impulsionnelle : $x_n = 1$ pour n = 0, sinon $x_n = 0$. Calculer y_n pour $-1 \le n \le 5$ et tracer sur le graphe réponse 2.2, la courbe y_n en fonction de $n.T_e$.

Figure 2-2 : Graphe réponse à la question 2.1.5

2.1.6. Justifier l'intérêt de ce type d'algorithme par rapport à l'objectif désiré.

2.2. Etude fréquentielle du filtre numérique.

- 2.2.1. Etablir la fonction de transfert en z de ce filtre : T(z) = Y(z)/X(z)
- 2.2.2. En effectuant le changement de variable $z = e^{j\omega Te}$ avec ω pulsation du signal d'entrée et T_e période d'échantillonnage, établir la fonction de transfert complexe <u>T</u>(j ω).
- 2.2.3. $\underline{T}(j\omega)$ peut s'écrire $\underline{T}(j\omega) = 0.5 (\cos(1.5\omega T_e) + \cos(0.5\omega T_e))e^{-j1.5\omega T_e}$. En déduire le module de la fonction de transfert T(ω).
- 2.2.4. On appelle $\varphi(\omega) = \text{Arg } \underline{T}(j\omega)$, le déphasage introduit par ce filtre : montrer que ce déphasage s'exprime par $\varphi(\omega) = -1.5\omega T_e$.
- 2.2.5 En déduire l'expression du retard τ introduit par ce filtre dans la transmission des informations.

2.2.6. Préciser le domaine de fréquences utile en relation avec l'échantillonnage et déterminer la valeur du rapport f/F_e correspondant à la fréquence de coupure à -3dB sur la figure 2.1.

3. Etude simplifiée de l'alimentation.

A partir d'une source de tension continue V_{alim} de 24V, un régulateur linéaire permet d'obtenir une tension régulée V_s de 9V.

L'amplificateur opérationnel alimenté en monotension sous V_{alim} amplifie la tension d'erreur $\epsilon = V_{ref} - V_r$, la tension V_{ref} étant obtenue par l'utilisation d'une diode zener.

3.1. Modélisation de la boucle de régulation.

L'utilisation d'une régulation, donc d'une boucle de contre-réaction, nécessite l'étude de la stabilité du système. Dans cette perspective, nous procéderons à une modélisation du système bouclé valable pour les variations autour du point de fonctionnement.

- 3.1.1. Exprimer la transmittance opérationnelle de la chaîne de retour : $H_r(p) = V_r(p)/V_s(p)$ en fonction de R_1 et R_2 .
- 3.1.2. La transmittance de l'amplificateur opérationnel : $H_0(p) = V_{A0}(p)/\epsilon(p)$ est donnée dans le schéma-bloc *figure 3.2*. Décrire le comportement associé en précisant la signification des paramètres A₀ et ω_0 .

Figure 3.2.

La charge est équivalente à une résistance R_L en parallèle avec un condensateur C_L. Le schéma équivalent simplifié en petits signaux du transistor est indiqué *figure 3.4.*

Figure 3.3.

Figure 3.4.

Rappel : R_1 = 51,1k Ω ; R_2 = 23,2k Ω . On donne R $_L\,$ = 22 $\Omega.$

3.1.3. Justifier le schéma équivalent aux variations *figure 3.5.* pour la détermination de la transmittance $H_1(p) = V_s(p) / V_{A0}(p)$.

3.1.4. En posant $Z_L(p)$ l'impédance de la charge, montrer que $H_1(p) = V_s(p) / V_{A0}(p)$ peut s'écrire :

$$H_1(p) = \frac{Z_L(p)(h_{21}+1)}{r_{be} + R_B + Z_L(p)(h_{21}+1)}$$

3.1.5. Remplacer $Z_L(p)$ par son expression et exprimer $H_1(p)$ sous la forme :

$$H_{1}(p) = \frac{H_{0}}{1 + \frac{p}{\omega_{1}}}$$

dans laquelle : $H_{0} = \frac{R_{L}(h_{21}+1)}{r_{be}+R_{B}+R_{L}(h_{21}+1)}$ et $\omega_{1} = \frac{r_{be}+R_{B}+R_{L}(h_{21}+1)}{(r_{be}+R_{B})R_{L}C_{L}}$

3.2. Etude de la stabilité de la boucle de régulation.

Pour étudier la stabilité de la boucle, nous utiliserons l'étude harmonique en boucle ouverte.

3.2.1. A partir des résultats précédents, exprimer la fonction de transfert en boucle ouverte

$$\begin{split} \mathsf{T}_{\mathsf{BO}}(\mathsf{p}) &= \mathsf{V}_{\mathsf{r}}(\mathsf{p})/\epsilon(\mathsf{p}) \text{ en fonction de } \mathsf{A}_0, \, \omega_0, \, \mathsf{H}_0, \, \omega_1, \, \mathsf{R}_1 \text{ et } \mathsf{R}_2. \\ \mathsf{En déduire } \mathsf{T}_0 \text{ telle que} : T_{BO}(p) &= \frac{T_0}{\left(1 + \frac{p}{\omega_0}\right)\left(1 + \frac{p}{\omega_1}\right)} \end{split}$$

3.2.2. Quelle est la nature et quel est l'ordre du système en boucle ouverte ?

3.2.3. <u>Application numérique</u> : $A_0 = 2.10^5$; $f_0 = \omega_0/2\pi = 10Hz$; $r_{be} = 10\Omega$; $R_B = 47 \Omega$; $h_{21} = 40$; $R_L = 22 \Omega$; $C_L^{=} 10 \mu$ F. Calculer T_0 , la valeur équivalente en dB, G_0 et $f_1 = \omega_1/2\pi$.

- 3.2.4. Les diagrammes de Bode de la fonction de transfert complexe $\underline{T}_{BO}(j\omega)$ sont représentés *figure 3.6.* Superposer les diagrammes asymptotiques de gain et de phase en précisant sur la figure les fréquences f₀ et f₁ ainsi que le gain G₀.
- 3.2.5. Placer la marge de phase M_{ϕ} sur la *figure 3.6*. et mesurer sa valeur. Que peut-on dire de la stabilité du système ?

3.3. Correction de la boucle de régulation.

Pour améliorer le comportement du système bouclé, un condensateur est placé en contreréaction sur l'amplificateur opérationnel. Les diagrammes de Bode de la fonction de transfert complexe du système corrigé $\underline{T}_{BOc}(j\omega)$ sont représentés *figure 3.7*.

- 3.3.1. Comparer les diagrammes de Bode du système corrigé $\underline{T}_{BOc}(j\omega)$ à ceux du système non corrigé. Quelle est la principale conséquence de la correction ?
- 3.3.2. Placer la marge de phase M_{ϕ} sur la *figure 3.7.* et mesurer sa valeur. La correction est-elle satisfaisante du point de vue de la stabilité?

Figure 3.6. Diagrammes de Bode en boucle ouverte

Figure 3.7. Diagrammes de Bode en boucle ouverte avec correction