
Lycée Victor Hugo TP no 10
INFORMATIQUE
BCPST 1

TRAVAUX PRATIQUES no 10
Traitement d’images

I. Formulaire

1) Tableaux

import numpy as np Importe le module numpy sous l’alias np

np.array(liste) Converti une liste en un tableau de numpy (type array)

np.zeros ((n_1 ,n_2 ,... , n_p))
Création d’un tableau de zéros de dimension p et de taille
(n_1 ,n_2 ,... , n_p)

np.ones ((n_1 ,n_2 ,... , n_p))
Création d’un tableau de uns de dimension p et de taille
(n_1 ,n_2 ,... , n_p)

np.shape(T) Taille du tableau T

2) Tableaux-images de dimension 3

image[i,j] Triplet RGB du pixel ligne i et colonne j

image[i,j,k] Valeur de la couleur k (k = 0, 1, 2) du pixel ligne i et colonne j

image[i] Tableau de tous les pixels de la ligne i

image [:,j] Tableau de tous les pixels de la colonne j

n, p, _ = np.shape(image) Permet de récupérer le nombre de lignes n et le nombre de colonnes p

3) Lire et enregistrer une image

import matplotlib .image as img Importe le module image sous l’alias img

image = img. imread (nom_fichier) Création du tableau-image à partir du fichier nom_fichier

img. imsave (nom_fichier , image)
Enregistre le tableau-image dans un fichier sous le nom
nom_fichier

1/7

4) Afficher une image

import matplotlib . pyplot as plt Importe le module pyplot sous l’alias plt

plt. imshow (image) Transformation du tableau en image.

plt.show () Affichage de l’image

II. Informations complémentaires pour travailler sur une image

1) Couleurs et code RGB

Voici une liste de quelques couleurs et de leur code RGB pour un fichier ".png" :

Code Couleur du pixel Code Couleur du pixel

[0.0, 0.0, 0.0] Noir [1.0, 1.0, 0.0] Jaune

[1.0, 1.0, 1.0] Blanc [1.0, 0.0, 1.0] Magenta

[x, x, x] Nuance de gris [0.0, 1.0, 1.0] Cyan

[1.0, 0.0, 0.0] Rouge [1.0, 0.5, 0.0] Orange

[0.0, 1.0, 0.0] Vert [1.0, 0.0, 0.5] Rose

[0.0, 0.0, 1.0] Bleu [0.35, 0.2, 0.0] Marron

2) Afficher un tableau-image

Pour afficher un tableau-image depuis Python, il faut utiliser les deux instructions suivantes :
plt. imshow (image)
plt.show ()

3) Modifier un pixel

Pour modifier la couleur d’un pixel, il suffit de changer son code RGB à l’aide de la syntaxe suivante :
image[i,j ,0] = nouvelle_quantit é _de_rouge
image[i,j ,1] = nouvelle_quantit é _de_vert
image[i,j ,2] = nouvelle_quantit é _de_bleu

On peut aussi modifier les trois couleurs en même temps :
image[i,j] = [quantit é_de_rouge , quantit é_de_vert , quantit é _de_bleu]

Pour modifier tous les pixels, il faut donc faire deux boucles imbriquées (une pour les lignes et une pour
les colonnes) et effectuer les modifications pixel par pixel :

2/7

n, p, _ = np.shape(image)
for i in range (n):

for j in range (p):
image[i,j] = [quantit é_de_rouge , quantit é_de_vert , quantit é _de_bleu]

4) Exemples d’image

Dans le TP, on utilisera les exemples d’images en ".png" disponibles sur Hugoprépas pour tester ses
différentes fonctions.

III. Traitement d’images pixel par pixel

1) Avant de commencer

Écrire en début de fichier (dans l’éditeur) les commandes suivantes :
1 import numpy as np
2 import matplotlib . pyplot as plt
3 import matplotlib .image as img
4 from os import chdir
5

6 chdir(r" Chemin du dossier dans lequel se trouvent les images télécharg ées")
7

8 def affiche (image):
9 """ Fonction qui permet d’afficher l’image associ ée au tableau image ."""

10 plt. imshow (image)
11 plt.show ()

N’oubliez pas le petit r avant les guillemets !

2) Saturation

Pour saturer une image suivant une couleur, par exemple le rouge, on doit transformer les quantités de
rouge de tous les pixels en 1.0.

Écrire la fonction suivante et la tester en essayant de comprendre ce qu’elle fait et pourquoi elle le fait :
1 def saturation (image , couleur):
2 n, p, _ = np.shape(image)
3

4 for i in range (n):
5 for j in range (p):
6 if couleur == "R":
7 image[i,j ,0] = 1.0
8 elif couleur == "V":
9 image[i,j ,1] = 1.0

10 elif couleur == "B":
11 image[i,j ,2] = 1.0
12

13 return image

On peut alors exécuter dans l’éditeur les instructions suivantes pour tester la fonction :
image = img. imread (" monarch .png")
image_sat_rouge = saturation (image ,"R")
affiche (image_sat_rouge)

3/7

On remarquera que la fonction saturation modifie le tableau-image et renvoie le résultat mais son
travail n’est pas d’afficher l’image : toutes les fonctions que vous allez créer devront respecter ce
principe. Elles ne doivent pas utiliser la fonction affiche.

E”x´eˇr`cˇi`c´e 1 : Recopier la fonction précédente sans copier-coller et tester cette fonction sur des
exemples.

3) Coloration

E”x´eˇr`cˇi`c´e 2 : Écrire une fonction coloration (image , couleur) qui prend en arguments un tableau-
image et une couleur ("R", "V" ou "B") et qui renvoie l’image ayant uniquement la composante couleur
demandée.

Par exemple, si couleur = "R", alors le pixel de code RGB [0.4 , 0.3, 0.8] sera transformé en pixel
de code RGB [0.4 , 0.0, 0.0].

4) Négatif

E”x´eˇr`cˇi`c´e 3 : Écrire une fonction negatif (image) qui transforme l’image en négatif, c’est-à-dire que
pour chaque pixel et pour chaque couleur, on applique la transformation x 7→ 1− x.

Par exemple, si le code RGB d’un pixel est [0.4 , 0.3, 0.8], le code RGB du même pixel de l’image en
négatif sera alors [0.6 , 0.7, 0.2].

5) Niveaux de gris

Les pixels gris sont les pixels ayant la même quantité de rouge, vert et bleu. Pour transformer une image
en niveaux de gris, il faut donc déterminer, pour chaque pixel, une valeur commune de quantité de chaque
couleurs : la luminosité du pixel.

E”x´eˇr`cˇi`c´e 4 (Luminosité) : Écrire une fonction luminosite (pixel) qui prend en argument une liste
de 3 nombres et qui renvoie leur moyenne.
>>> luminosite ([0.4 , 0.3, 0.8])
0.5

E”x´eˇr`cˇi`c´e 5 (Niveaux de gris) : Écrire une fonction niveaux_de_gris (image) transformant une image
en niveaux de gris à l’aide de la fonction luminosite précédente.

Par exemple, le pixel [0.4 , 0.3, 0.8] sera transformé en [0.5 , 0.5, 0.5] car sa luminosité est de
0.5.

E”x´eˇr`cˇi`c´e 6 (Noir et blanc) : Écrire une fonction noir_et_blanc (image , seuil = 0.5) transformant
une image en noir et blanc en transformant les pixels de luminosité inférieure à seuil en noir et les pixels
de luminosité supérieure à seuil en blanc (pour le cas d’égalité, on choisira l’un ou l’autre).

Par exemple, pour un seuil de 0.4, le pixel [0.4 , 0.3, 0.8] sera transformé en [1.0 , 1.0, 1.0] car
sa luminosité est 0.5 > 0.4.

4/7

IV. Traitement d’images par déplacement de pixels

1) Image miroir

E”x´eˇr`cˇi`c´e 7 : Compléter la fonction miroir (image) permettant de créer une image miroir de la première
par symétrie par rapport à un axe vertical centré sur l’image initiale.

1 def miroir (image):
2 n, p, _ = np.shape(image)
3 image_miroir = np.zeros (...)
4

5 for i in range (n):
6 for j in range (p):
7 image_miroir [i, j] = ...
8

9 return image_miroir

2) Rotation

E”x´eˇr`cˇi`c´e 8 : En s’inspirant de la fonction miroir, écrire une fonction rotation (image) qui renvoie
l’image tournée d’un quart de tour dans le sens des aiguilles d’une montre.

V. Traitement d’images par convolution

On appelle filtre de convolution, une matrice de taille 3× 3.

Considérons par exemple le filtre de convolution suivant :

M =

1 −3 0
1 1 1
0 −1 0


Pour le tableau-image suivant (on n’écrit que la composante de rouge pour simplifier) :

0.5 0.1 0.2 0.9 0.9

0.0 0.5 0.3 0.1 1.0

0.4 0.3 0.2 0.5 0.6

0.6 0.1 0.8 0.9 0.6

0.5 0.1 0.2 0.1 0.7

on va, pour chaque pixel (excepté ceux du bord), regarder les pixels voisins

0.5 0.1 0.2 0.9 0.9

0.0 0.5 0.3 0.1 1.0

0.4 0.3 0.2 0.5 0.6

0.6 0.1 0.8 0.9 0.6

0.5 0.1 0.2 0.1 0.7

5/7

et effectuer le calcul :

1× 0.5− 3× 0.1 + 0× 0.2 + 1× 0.0 + 1× 0.5 + 1× 0.3 + 0× 0.4− 1× 0.3 + 0× 0.2 = 0.7

Le pixel 0.5 sera alors remplacé par 0.7 dans la nouvelle image. On procède de même pour tous les autres
pixels (excepté ceux du bord) et toutes les autres couleurs.

Dans le cas où le résultat du calcul est inférieur à 0.0, on mettra la valeur 0.0 et dans le cas où le résultat
du calcul est supérieur à 1.0, on mettra la valeur 1.0.

Ainsi, pour l’exemple précédent, on obtiendra le tableau suivant :

0.5 0.1 0.2 0.9 0.9

0.0 0.7 0.2 0.0 1.0

0.4 0.0 0.0 0.4 0.6

0.6 0.9 1.0 0.9 0.6

0.5 0.1 0.2 0.1 0.7

E”x´eˇr`cˇi`c´e 9 : Compléter la fonction suivante programmant un filtre de convolution :
1 def convolution (image , filtre):
2 n, p, _ = np.shape(image)
3 image_filtre = np.zeros ((n, p, 3))
4 for i in range (... , ...):
5 for j in range (... , ...):
6 for k in range (3):
7 v = np.sum(image [...:... , ...:... , k] * filtre)
8 v = min(v, ...)
9 v = max(v, ...)

10 image_filtre [i, j, k] = v
11 return image_filtre

E”x´eˇr`cˇi`c´e 10 (Floutage) : Écrire une fonction de floutage (image) permettant de flouter une image
grâce au filtre de convolution :

M =
1

9


1 1 1

1 1 1

1 1 1



E”x´eˇr`cˇi`c´e 11 (Détection de contours) : Écrire une fonction de contours (image) permettant de ren-
forcer les contours d’une image grâce au filtre de convolution :

M =


−1 −1 −1

−1 8 −1

−1 −1 −1



6/7

VI. Création d’une image, simulations (pour aller plus loin)

E”x´eˇr`cˇi`c´e 12 : Essayer de deviner à l’avance ce que fait ce programme et tester le ensuite pour n = 210
et p = 420 :

1 def mystère(n,p):
2 image = np.zeros ((n,p ,3))
3 rouge = [1 ,0 ,0]
4 blanc = [1 ,1 ,1]
5 bleu = [0 ,0 ,1]
6

7 for i in range (n):
8 for j in range (p):
9 if j < p//3:

10 image[i,j] = bleu
11 elif j < 2*p//3:
12 image[i,j] = blanc
13 else:
14 image[i,j] = rouge
15

16 plt. imshow (image)
17 plt.show ()

E”x´eˇr`cˇi`c´e 13 : Un marcheur se déplace aléatoirement sur un quadrillage de la façon suivante : pour
chaque nouveau pas, le marcheur lance un dé à 4 faces et, selon le numéro obtenu, se déplace d’un cran
vers la gauche, vers la droite, vers le haut ou vers le bas.

Créer un programme prenant en arguments trois entiers n, p et N et simulant le parcours de N pas du
marcheur sur une grille n× p.

On créera une image blanche de taille n × p, puis on dessinera un pixel noir sur chaque nouveau pas du
marcheur.

E”x´eˇr`cˇi`c´e 14 : Étant donnée une image, il peut être intéressant de compter le nombre de pixels ayant
une couleur donnée. Les pixels pouvant ne pas avoir exactement la même couleur (au niveau du code
RGB), on peut utiliser la distance euclidienne pour déterminer si deux pixels ont des couleurs plus ou
moins proches c’est-à-dire qu’en considérant un pixel comme un vecteur de l’espace, on dira que deux
pixels −→u (R,G,B) et −→v (R′, G′, B′) ont à peu près la même couleur lorsque :

‖−→u −−→v ‖ =
√

(R−R′)2 + (G−G′)2 + (B −B′)2 < ε

où ε > 0 est une marge d’erreur fixée.
1) Écrire une fonction distance (pixel1 , pixel2) qui, étant donnés deux pixels (tableaux ou liste de

trois éléments) renvoie la distance entre ces deux pixels.
2) Écrire une fonction meme_couleur (pixel1 , pixel2 , epsilon) qui renvoie True si cette distance

est inférieure à epsilon et False sinon.
3) Écrire une fonction nb_pixels (image , couleur , epsilon) qui renvoie le nombre de pixels du

tableau image dont la couleur est proche à epsilon près de celle du pixel couleur.
Par exemple, pour compter le nombre de pixels jaunes dans une image, on pourra appeler la fonction
nb_pixels de la manière suivante : nb_pixels (image , [1.0 , 1.0, 0.0] , 0.1).

7/7

	Formulaire
	Tableaux
	Tableaux-images de dimension 3
	Lire et enregistrer une image
	Afficher une image

	Informations complémentaires pour travailler sur une image
	Couleurs et code RGB
	Afficher un tableau-image
	Modifier un pixel
	Exemples d'image

	Traitement d'images pixel par pixel
	Avant de commencer
	Saturation
	Coloration
	Négatif
	Niveaux de gris

	Traitement d'images par déplacement de pixels
	Image miroir
	Rotation

	Traitement d'images par convolution
	Création d'une image, simulations (pour aller plus loin)

