Lycée Victor Hugo TP n°8
INFORMATIQUE
BCPST 1

TRAVAUX PRATIQUES n° 8
Algorithmes sur les listes et les chaines de caracteres

On propose d’étudier un certain nombre de situations classiques sur les listes : compter les éléments,
tester une propriété, chercher un élément. Pour certaines d’entre elles les fonctions existent déja dans
les bibliotheques de base de Python, ou s’obtiennent facilement a partir d’elles, mais on s’interdit de les
utiliser. On travail donc essentiellement avec des boucles for, 'acces aux indices d’une liste, les conditions
booléennes classiques. Les méthodes sont les mémes pour traiter des listes ou bien des chaines de caracteres.

Gocencice 4 : Ecrire une fonction compte_positifs (L) qui prend en argument une liste L et qui compte
combien de termes de L sont positifs.

Gocencice 2 - Ferire une fonction compte (L, x) qui prend en argument une liste L et un nombre x et
qui compte combien de fois x apparait dans la liste L.

Gocencice 3 : Ecrire une fonction differences (L, M) qui prend en argument deux listes L, M, supposées
de méme longueur (on ne demande pas que la fonction vérifie cette condition) et compte a combien d’indices
les éléments L[i] et M[i] sont différents.

Par exemple les listes L = [3, 7, 6, 5, 31 et M = [3, 8, 6, 5, 4] sont différentes a 2 indices, pour
i=1eti = 4.

Les chaines de caracteres se manipulent de la méme maniere : pour une telle chaine s, alors la longueur est
len(s), et le i-eme caractere est s [1]1, numéroté de 0 a n — 1. Ainsi une boucle for comme les précédentes
va parcourir les caracteres uns par uns de la chaine. Un caractere seul s’écrit entre guillemets doubles "a",
"b" etc.

Cocencice 4 : Ecrire une fonction compte_voyelles (s) qui prend en argument une chaine de caracteéres
s et compte le nombre de voyelles (lettres parmi a, e, i, o, u, y) dans s.

Gocencice 5 : Ecrire une fonction binaire (m) qui prend en argument une chaine de caractéres m (par
exemple m = "011101011"), et qui renvoie True si m est bien composée uniquement de caractéres 0 ou 1,
et False sinon.

Cocencice 6 : Eerire une fonction est_croissante (L) qui renvoie True si la liste L est rangée par ordre
croissant et False sinon.

Gocercice T : Ecrire une fonction est_monotone (L) qui renvoie True si la liste L est monotone, c’est-a-
dire soit croissante soit décroissante et False sinon.

gocefw’tce 8:
1) Ecrire une fonction cherche(L, x) qui prend en argument une liste L et un objet x et cherche
I’élément x dans la liste L.

2) Compléter la fonction ci-dessus pour que cherche (L, x) renvoie le premier indice de la liste ol x
apparait, et None s’il n’apparait pas.

1/3



Gocencice 9 - Ecrire une fonction premier_negatif (L) qui renvoie le premier élément de L qui est
strictement négatif (1’élément, pas son indice), et None s’il n'y a pas de tel élément.

Socercice 10 : Ecrire une fonction indice_differents (s, t) qui prend en argument deux chaines de
caracteres, supposées de méme longueur, et qui renvoie le premier indice auxquel les chaines different, et
None si elles sont égales. Par exemple, les chaines s = "ACGTGATAA" et t = "ACGTCATTA" sont de méme
longueur 9 et different aux indices 4 (s[4] = "G" et t[4] = "C")et 7 (s[7] = "a" et t[7] = "T") donc
la fonction doit renvoyer 4.

Socercice 11 : On suppose que la liste L ne contient que des nombres entiers entre 0 et 9. Dans ce cas,
on souhaite compter combien de fois apparait chaque chiffre, en renvoyant une liste ¢ de longueur 10 telle
que C[x] donne le nombre de fois ou le chiffre x apparait dans L. Si on s’y prend bien, on peut le faire en
parcourant la liste une seule fois, au lieu d’appeler 10 fois une fonction pour compter...

Ecrire cette fonction, qu'on appellera compte_tout (L).

Cocencice 12 : On considére qu'un mot de passe valide sera formé uniquement des caracteres parmi
ceux-ci : "abcdefghijklmnopqrstuvwxyz0123456789"

1) Ecrire une fonction caractere_valide (x) qui teste si x est un caractere valide ou non.

2) En déduire une fonction motdepasse_valide (m) qui teste si m, une chaine de caracteres, représente
un mot de passe valide.

3) Bonus : écrire une fonction motdepasse_fort (m) qui teste si m est valide et contient au moins une
lettre et un chiffre.

Sxcencice 13 (*) : On considere des listes constituées uniquement de nombres 0 et 1 et on souhaite
compter le nombre blocs de 1 consécutifs. Par exemple pour

L= 1[0, t, 1, 0, 2,1, 1, 0, O, 1, 0, O, 1, 1]

on compte 4 blocs de 1, ayant pour tailles respectives 2, 3, 1, 2.

Ecrire la fonction compte_blocs (L) qui prend en argument une telle liste et renvoie le nombre de blocs.
Attention a ce qu’elle fonctionne correctement dans tous les cas, que les blocs soient calés au début de la

liste ou a la fin ou pas du tout.

Socercice 14 (*) : Une permutation de longueur n est une liste de longueur n ot chacun des nombres de

0 & n — 1 apparailt exactement une fois. Par exemple [3, 1, 0, 2] est bien une permutation de longueur
4.

1) Pourquoi suffit-il que chacun de ces nombres apparaisse au moins une fois? Ou bien au plus une
fois ?

2) Ecrire une fonction appartient (L, x) qui renvoie True si le nombre x est présent dans la liste L
et False sinon.

3) En utilisant la fonction précédente, écrire une fonction est_permutation (L) qui renvoie True si L
est bien une permutation, et False sinon.

Une autre possibilité qui est plus rapide mais nécessite plus de mémoire est la suivante. Pour tester si la
liste L est bien une permutation, on crée une liste de booléens M de méme taille que L, et on parcourt une
seule fois L, mais on « coche » les nombres qu’on a vus. Ainsi M[x] = True est a interpréter comme « x
est bien présent dans L » alors que M[x] = False signifie que x n’a pas encore été rencontré.

4) En utilisant cette méthode, écrire une fonction est_permutation_2(L).

2/3



Pour ceux qui ont fini trop vite :

5) Ecrire une fonction permutations (n) qui renvoie la liste de toutes les permutations de longueur n
(une liste de listes!)

3/3



