
Lycée Victor Hugo TP no 8
INFORMATIQUE
BCPST 1

TRAVAUX PRATIQUES no 8
Algorithmes sur les listes et les chaînes de caractères

On propose d’étudier un certain nombre de situations classiques sur les listes : compter les éléments,
tester une propriété, chercher un élément. Pour certaines d’entre elles les fonctions existent déjà dans
les bibliothèques de base de Python, ou s’obtiennent facilement à partir d’elles, mais on s’interdit de les
utiliser. On travail donc essentiellement avec des boucles for, l’accès aux indices d’une liste, les conditions
booléennes classiques. Les méthodes sont les mêmes pour traiter des listes ou bien des chaînes de caractères.

E”x´eˇr`cˇi`c´e 1 : Écrire une fonction compte_positifs (L) qui prend en argument une liste L et qui compte
combien de termes de L sont positifs.

E”x´eˇr`cˇi`c´e 2 : Écrire une fonction compte (L, x) qui prend en argument une liste L et un nombre x et
qui compte combien de fois x apparaît dans la liste L.

E”x´eˇr`cˇi`c´e 3 : Écrire une fonction differences (L, M) qui prend en argument deux listes L, M, supposées
de même longueur (on ne demande pas que la fonction vérifie cette condition) et compte à combien d’indices
les éléments L[i] et M[i] sont différents.

Par exemple les listes L = [3, 7, 6, 5, 3] et M = [3, 8, 6, 5, 4] sont différentes à 2 indices, pour
i = 1 et i = 4.

Les chaînes de caractères se manipulent de la même manière : pour une telle chaîne s, alors la longueur est
len(s), et le i-ème caractère est s[i], numéroté de 0 à n−1. Ainsi une boucle for comme les précédentes
va parcourir les caractères uns par uns de la chaîne. Un caractère seul s’écrit entre guillemets doubles "a",
"b", etc.

E”x´eˇr`cˇi`c´e 4 : Écrire une fonction compte_voyelles (s) qui prend en argument une chaîne de caractères
s et compte le nombre de voyelles (lettres parmi a, e, i, o, u, y) dans s.

E”x´eˇr`cˇi`c´e 5 : Écrire une fonction binaire (m) qui prend en argument une chaîne de caractères m (par
exemple m = " 011101011 "), et qui renvoie True si m est bien composée uniquement de caractères 0 ou 1,
et False sinon.

E”x´eˇr`cˇi`c´e 6 : Écrire une fonction est_croissante (L) qui renvoie True si la liste L est rangée par ordre
croissant et False sinon.

E”x´eˇr`cˇi`c´e 7 : Écrire une fonction est_monotone (L) qui renvoie True si la liste L est monotone, c’est-à-
dire soit croissante soit décroissante et False sinon.

E”x´eˇr`cˇi`c´e 8 :
1) Écrire une fonction cherche (L, x) qui prend en argument une liste L et un objet x et cherche

l’élément x dans la liste L.
2) Compléter la fonction ci-dessus pour que cherche (L, x) renvoie le premier indice de la liste où x

apparaît, et None s’il n’apparaît pas.

1/3



E”x´eˇr`cˇi`c´e 9 : Écrire une fonction premier_negatif (L) qui renvoie le premier élément de L qui est
strictement négatif (l’élément, pas son indice), et None s’il n’y a pas de tel élément.

E”x´eˇr`cˇi`c´e 10 : Écrire une fonction indice_differents (s, t) qui prend en argument deux chaînes de
caractères, supposées de même longueur, et qui renvoie le premier indice auxquel les chaînes diffèrent, et
None si elles sont égales. Par exemple, les chaînes s = " ACGTGATAA " et t = " ACGTCATTA " sont de même
longueur 9 et diffèrent aux indices 4 (s[4] = "G" et t[4] = "C") et 7 (s[7] = "A" et t[7] = "T") donc
la fonction doit renvoyer 4.

E”x´eˇr`cˇi`c´e 11 : On suppose que la liste L ne contient que des nombres entiers entre 0 et 9. Dans ce cas,
on souhaite compter combien de fois apparaît chaque chiffre, en renvoyant une liste C de longueur 10 telle
que C[x] donne le nombre de fois où le chiffre x apparaît dans L. Si on s’y prend bien, on peut le faire en
parcourant la liste une seule fois, au lieu d’appeler 10 fois une fonction pour compter...

Écrire cette fonction, qu’on appellera compte_tout (L).

E”x´eˇr`cˇi`c´e 12 : On considère qu’un mot de passe valide sera formé uniquement des caractères parmi
ceux-ci : " abcdefghijklmnopqrstuvwxyz0123456789 "

1) Écrire une fonction caractere_valide (x) qui teste si x est un caractère valide ou non.
2) En déduire une fonction motdepasse_valide (m) qui teste si m, une chaîne de caractères, représente

un mot de passe valide.
3) Bonus : écrire une fonction motdepasse_fort (m) qui teste si m est valide et contient au moins une

lettre et un chiffre.

E”x´eˇr`cˇi`c´e 13 (*) : On considère des listes constituées uniquement de nombres 0 et 1 et on souhaite
compter le nombre blocs de 1 consécutifs. Par exemple pour

L = [0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1]

on compte 4 blocs de 1, ayant pour tailles respectives 2, 3, 1, 2.

Écrire la fonction compte_blocs (L) qui prend en argument une telle liste et renvoie le nombre de blocs.

Attention à ce qu’elle fonctionne correctement dans tous les cas, que les blocs soient calés au début de la
liste ou à la fin ou pas du tout.

E”x´eˇr`cˇi`c´e 14 (*) : Une permutation de longueur n est une liste de longueur n où chacun des nombres de
0 à n− 1 apparaît exactement une fois. Par exemple [3, 1, 0, 2] est bien une permutation de longueur
4.

1) Pourquoi suffit-il que chacun de ces nombres apparaisse au moins une fois ? Ou bien au plus une
fois ?

2) Écrire une fonction appartient (L, x) qui renvoie True si le nombre x est présent dans la liste L
et False sinon.

3) En utilisant la fonction précédente, écrire une fonction est_permutation (L) qui renvoie True si L
est bien une permutation, et False sinon.

Une autre possibilité qui est plus rapide mais nécessite plus de mémoire est la suivante. Pour tester si la
liste L est bien une permutation, on crée une liste de booléens M de même taille que L, et on parcourt une
seule fois L, mais on « coche » les nombres qu’on a vus. Ainsi M[x] = True est à interpréter comme « x
est bien présent dans L » alors que M[x] = False signifie que x n’a pas encore été rencontré.

4) En utilisant cette méthode, écrire une fonction est_permutation_2 (L).

2/3



Pour ceux qui ont fini trop vite :

5) Écrire une fonction permutations (n) qui renvoie la liste de toutes les permutations de longueur n
(une liste de listes !)

3/3


