Corrigé du DM 1

Soit p un nombre premier, on note :

$$\mathcal{G}_p = \left\{ z \in \mathbb{C} \mid \exists k \in \mathbb{N}, z^{(p^k)} = 1 \right\}$$

et pour tout $k \in \mathbb{N}$, on note :

$$V_k = \mathbb{U}_{p^k} = \left\{ z \in \mathbb{C} \mid z^{(p^k)} = 1 \right\}.$$

1. a) Soit $k \in \mathbb{N}$, V_k est l'ensemble des racines (p^k) -ième de l'unité, donc : V_k $\left\{e^{\frac{2ij\pi}{p^k}}; \text{ avec } j \in \mathbb{Z}\right\} = \operatorname{gr}(e^{\frac{2i\pi}{p^k}})$ est un sous-groupe engendré; en particulier c'est un sous-groupe et son cardinal est p^k .

Pour tout $k \in \mathbb{N}$, V_k est un sous-groupe de (\mathbb{C}^*, \times) de cardinal p^k .

- b) Soit $k \in \mathbb{N}$ et $z \in V_k$,
- $donc: z^{(p^k)} = 1,$

donc:
$$z^{(p^{k+1})} = z^{p^k \times p} = (z^{(p^k)})^p = 1^p = 1$$

donc: $z \in V_{k+1}$.

On a montré que $V_k \subset V_{k+1}$.

De plus, pour $z = e^{\frac{2i\pi}{p^k+1}}$ on a : $z \in V_{k+1}$ et $z^{(p^k)} = e^{\frac{2i\pi}{p}}$ or : $t \mapsto e^{it}$ est injective de $[0; 2\pi[$ dans \mathbb{U} et $0 < \frac{2\pi}{p} < 2\pi,$

donc: $z^{(p^k)} \neq e^0 = 1$,

donc: $z \notin V_k$.

Conclusion

la suite $(V_k)_{k\in\mathbb{N}}$ est strictement croissante pour l'inclusion.

2. a) Soit $z \in \mathbb{C}$,

$$z \in \mathcal{G}_p \iff \exists k \in \mathbb{N}, z^{(p^k)} = 1$$
$$\iff \exists k \in \mathbb{N}, z \in V_k$$
$$\iff z \in \bigcup_{k \in \mathbb{N}} V_k.$$

Donc:

$$\mathcal{G}_p = \bigcup_{k \in \mathbb{N}} V_k.$$

- **b)** 0 n'est pas une racine de l'unité, donc $\mathcal{G}_p \subset \mathbb{C}^*$.
- Pour k = 0, on a $1^{p^k} = 1$ donc $1 \in \mathcal{G}_p$.

• Soit $x, y \in \mathcal{G}_p$,

donc : il existe $k,l\in\mathbb{N}$ tels que $x^{p^k}=1$ et $y^{p^l}=1$,

donc: $x^{p^{k+l}} = x^{p^k p^l} = (x^{p^k})^{p^l} = 1^{p^l} = 1$

et de même $y^{p^{k+l}} = 1$

donc: $(xy^{-1})^{p^{k+l}} = 1$ donc: $xy^{-1} \in \mathcal{G}_p$.

Donc:

 \mathcal{G}_p est un sous-groupe de (\mathbb{C}^*, \times) .

3. Soit $z \in V_{k+1} \setminus V_k$, on note α l'ordre de z dans V_{k+1} .

On sait que $z \notin V_k$, donc : $z^{(p^k)} \neq 1$,

donc : α ne divise pas p^k .

De plus : V_{k+1} est de cardinal p^{k+1} , donc α divise p^{k+1} ,

donc $\alpha \in \{1, p, p^2, \dots, p^k, p^{k+1}\}$

et comme α ne divise pas p^k , $\alpha = p^{k+1}$.

Donc: gr(z) est un sous-groupe de V_{k+1} de cardinal p^{k+1} qui est le cardinal de V_{k+1} .

Donc: $gr(z) = V_{k+1}$.

Conclusion:

 $z \in V_{k+1} \setminus V_k$, alors z est générateur de V_{k+1} .

- **4.** Soit H un sous-groupe propre de \mathcal{G}_p tel que $\forall k \in \mathbb{N}, H \neq V_k$, montrons que $H = \mathcal{G}_p$.
- a) Supposons par l'absurde qu'il existe $k \in \mathbb{N}$ tel que $H \subset V_k$.

Soit $A = \{j \in \mathbb{N} \mid H \subset V_i\}$, A est une partie de \mathbb{N} non vide car $k \in A$ et $0 \notin A$ car $H \not\subset V_0 = \{1\}.$

Soit l le plus petit élément de A, donc $l \ge 1$, $H \subset A_l$ et $H \not\subset A_{l-1}$.

Donc : il existe $z \in H \setminus V_{l-1} \subset V_l \setminus V_{l-1}$ et d'après la question précédente z est un générateur de V_l .

De plus H est un sous-groupe de \mathcal{G}_p , donc : $V_l = \operatorname{gr}(z) \subset H$.

Donc: $H = V_l$ ce qui est une contradiction.

On a montré que : $\forall k \in \mathbb{N}, H \not\subset V_k$.

b) Soit $k \in \mathbb{N}$ montrons que $V_k \subset H$.

On sait que $H \not\subset V_k$ et $H \neq V_k$, donc il existe $z \in H \setminus V_k$.

On considère l'ensemble $A = \{j \in \mathbb{N} \mid z \in V_i\}$, A est une partie de \mathbb{N} , non vide car $z \in \mathcal{G}_p = \bigcup V_i$.

Donc : A a un plus petit élément l et $z \in V_l$.

Or : $z \notin V_k$ et la suite $(V_i)_{i \in \mathbb{N}}$ est strictement croissante, donc $l > k \ge 0$ et $V_k \subset V_l$.

Par définition de $l, z \in V_l \setminus V_{l-1}$, donc, $V_l = \operatorname{gr}(z) \subset H$.

Donc : $V_k \subset V_l \subset H$.

On a montré que :

$$\forall k \in \mathbb{N}, V_k \subset H.$$

c) On sait que $\mathcal{G}_p = \bigcup_{k \in \mathbb{N}} V_k$, donc d'après la question précédente : $H = \mathcal{G}_p$.

Donc les sous-groupes de \mathcal{G}_p sont : les V_k , avec $k \in \mathbb{N}$ et \mathcal{G}_p ; de plus les V_k sont cycliques et aucun d'entre eux n'est maximal pour l'inclusion car la suite $(V_k)_{k \in \mathbb{N}}$ est strictement croissante.

Conclusion:

si H est un sous-groupe propre de \mathcal{G}_p , alors il existe $k \in \mathbb{N}$ tel que $H = V_k$.

5. Soit $F = \{z_1, \ldots, z_n\}$ une partie finie de \mathcal{G}_p .

Pour tout $j \in [1; n]$, $z_j \in \mathcal{G}_p = \bigcup_{k \in \mathbb{N}} V_k$, donc il existe $k_j \in \mathbb{N}$ tel que $z_j \in V_{k_j}$.

On pose $K = \max_{j \in [0, n]} k_j$.

La suite $(V_k)_{k\in\mathbb{N}}$ est strictement croissante,

donc: $\forall j \in [1; n], z_j \in V_K$.

Or : V_K est un sous-groupe propre de \mathcal{G}_p ,

donc : $gr(F) \subset V_K$ et $gr(F) \neq \mathcal{G}_p$.

Conclusion:

 \mathcal{G}_p n'est pas engendré par une partie finie.