Révision d'analyse, équations, récurrence DM 1

PCSI 2 - Mathématiques 2024-2025

Exercice 1 Soit $P: x \mapsto x^3 - 2x^2 - 5x + 6$

- 1. Trouver un $\alpha \in \mathbb{R}$ tel que $P(\alpha) = 0$.
- 2. En remplaçant α par la valeur de la question précédente, déterminez $a,b,c\in\mathbb{R}$ tels que, pour tout $x\in\mathbb{R}$

$$P(x) = (x - \alpha)(ax^2 + bx + c)$$

3. En déduire l'ensemble de définition de la fonction

$$f: x \mapsto \ln(x^3 - 2x^2 - 5x + 6)$$

Exercice 2 Résoudre selon la valeur de $a \in \mathbb{R}$ le système suivant :

$$\begin{cases} x + 3y + z &= 1\\ x - y + 2z &= 2\\ x + 7y &= a \end{cases}$$

Exercice 3 Soit (u_n) la suite définie par

$$\begin{cases} u_0 = u_1 = 1 \\ \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + \frac{2}{n+2} u_n \end{cases}$$

1. Vérifiez que pour tout $n \in \mathbb{N}$,

$$(n+2)^2 - \frac{2n^2}{n+2} - (n+1)^2 \ge 0$$

2. Montrez par récurrence double que pour tout $n \in \mathbb{N}$, $u_n \leq n^2$