DEVOIR SURVEILLÉ 1 - 18/09/24 - Durée 4h

Exercice 1

A. RÉSULTATS PRÉLIMINAIRES

Dans cette partie, on établit quelques résultats préliminaires qui seront utilisés dans la suite.

- 1. Pour $n \ge 1$, on pose : $u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) \ln(n)$.
 - (a) Étudier la nature de la série $\sum_{n\geq 1} (u_{n+1} u_n)$.
 - (b) En déduire que la suite $(u_n)_{n\geq 1}$ converge. On note γ sa limite.
- 2. Soit $x \in]0, +\infty[$. On considère l'application h_x de $]0, +\infty[$ vers $\mathbb R$ définie par :

$$h_x(t) = \frac{\ln(t)}{t^x}.$$

- (a) Déterminer le tableau de variation de h_x .
- (b) Justifier les inégalités :

$$\forall n \geqslant 3, \quad \int_{n}^{n+1} \frac{\ln(t)}{t} dt \leqslant \frac{\ln(n)}{n} \quad \text{et} \quad \forall n \geqslant 4, \quad \frac{\ln(n)}{n} \leqslant \int_{n-1}^{n} \frac{\ln(t)}{t} dt.$$

(c) Prouver que la série $\sum_{n\geqslant 1} (-1)^n \frac{\ln(n)}{n}$ est convergente mais qu'elle n'est pas absolument convergente.

On pose:

$$S = \sum_{n=1}^{+\infty} (-1)^n \frac{\ln(n)}{n}.$$

B. CALCUL DE S

On se propose dans cette partie de calculer la valeur de S.

Pour $n \ge 3$, on pose :

$$S_n = \sum_{k=1}^n (-1)^k \frac{\ln(k)}{k}, \ t_n = \sum_{k=1}^n \frac{\ln(k)}{k}, \ a_n = t_n - \frac{(\ln(n))^2}{2}.$$

- 1. Utiliser les inégalités établies en question 2.(b) de la partie A pour démontrer que :
 - (a) la suite $(a_n)_{n\geqslant 3}$ est décroissante,
 - (b) la suite $(a_n)_{n\geq 3}$ converge.

- 2. (a) Montrer que $\forall n \ge 3$, $S_{2n} = t_n t_{2n} + \left(\sum_{k=1}^n \frac{1}{k}\right) \ln(2)$.
 - (b) En déduire une expression de S_{2n} où figurent a_n , a_{2n} et u_n .
- 3. Calculer $\lim_{n\to+\infty} S_{2n}$ (on exprimera cette limite en fonction de γ et de $\ln(2)$) et en déduire S.

Exercice 2

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels. Pour tout $n\in\mathbb{N}^*$, on pose

$$b_n = n(a_n - a_{n+1}), \ A_n = \sum_{k=1}^n a_k \ \text{et} \ B_n = \sum_{k=1}^n b_k.$$

- 1. On prend dans cette question, pour tout $n \ge 1$, $a_n = \frac{2^{n-1}}{(n-1)!}$.
 - (a) Justifier que la série $\sum_{n\geqslant 1}a_n$ converge et donner sa somme.
 - (b) Montrer que la série $\sum_{n\geqslant 1} b_n$ converge et calculer sa somme.
- 2. On prend dans cette question, pour tout $n \ge 1$, $a_n = \frac{1}{2^{n-1}}$.
 - (a) Vérifier que la série $\sum\limits_{n\geqslant 1}a_n$ converge et calculer sa somme.
 - (b) Soit $x \in \mathbb{R}$ tel que |x| < 1.

 Montrer que la série $\sum_{n \ge 1} n x^{n-1}$ converge et que sa somme vaut $\sum_{n=1}^{+\infty} n x^{n-1} = \left(\sum_{n=0}^{+\infty} x^n\right)^2$.

 En déduire la valeur de la somme $\sum_{n=1}^{+\infty} n x^{n-1}$ en fonction de x.
 - (c) Montrer que la série $\sum_{n\geqslant 1}b_n$ converge et calculer sa somme.
- 3. On prend dans cette question, $a_n = \frac{1}{n \ln(n)}$, $n \ge 2$ et $a_1 = 0$.
 - (a) À l'aide d'une comparaison série/intégrale, déterminer la nature de la série $\sum_{n\geqslant 1}a_n$.
 - (b) Montrer qu'on a $b_n \sim \frac{1}{n \ln n}$.
 - (c) Quelle est la nature de la série $\sum_{n\geqslant 1}b_n$?
- 4. On suppose dans cette question que la série $\sum_{n\geqslant 1} a_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est une suite décroissante de réels positifs.
 - (a) Pour tout entier naturel n non nul, on note $u_n = \sum_{p=n+1}^{2n} a_p$. Montrer que $\forall n \in \mathbb{N}^*, \ na_{2n} \leq u_n$.

2

(b) En déduire que $\lim_{n\to+\infty} na_{2n} = 0$.

- (c) Démontrer alors que $\lim_{n\to+\infty} na_n = 0$.
- (d) Montrer que la série $\sum_{n\geq 1} (na_n (n+1)a_{n+1})$ converge.
- (e) En déduire que la série $\sum\limits_{n\geqslant 1}b_n$ converge.
- (f) Montrer qu'on a de plus $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$.
- 5. On suppose dans cette question que la série $\sum_{n\geqslant 1} b_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est positive, décroissante et de limite nulle.
 - (a) Vérifier que $\forall m \in \mathbb{N}^*, m \leq n, B_n \geq A_m ma_{n+1}$.
 - (b) En déduire que $\sum_{n\geqslant 1} a_n$ converge.

Exercice 3

Dans tout cet exercice, p désigne un entier naturel et $(u_n)_{n \ge p}$ une suite de nombres réels.

On appelle produit infini $\prod_{n\geqslant p}u_n$ la suite $(P_n)_{n\geqslant p}$ définie par :

$$\forall n \in \mathbb{N} \text{ tel que } n \geqslant p, \quad P_n = \prod_{k=p}^n u_k.$$

Lorsque le produit infini $\prod_{n \ge p} u_n$ converge, on pose :

$$\prod_{k=p}^{+\infty} u_k = \lim_{n \to +\infty} P_n.$$

A. Quelques résultats théoriques

- 1. Dans cette question, on suppose que pour tout $n \in \mathbb{N}$ tel que $n \ge p$, $u_n \ne 0$. En considérant le quotient $\frac{P_{n+1}}{P_n}$, montrer que si le produit infini $\prod_{n \ge p} u_n$ converge vers un réel non nul alors la suite $(u_n)_{n \ge p}$ converge vers 1.
- 2. Dans cette question, on suppose que pour tout $n \in \mathbb{N}$ tel que $n \ge p, u_n > 0$. Montrer que le produit infini $\prod_{n \ge p} u_n$ converge vers un réel non nul si et seulement si la série $\sum_{n \ge p} \ln(u_n)$ converge.
- 3. Dans cette question, on suppose que pour tout $n \in \mathbb{N}$ tel que $n \ge p$, $u_n \ge 0$. Montrer que le produit infini $\prod_{n \ge p} (1 + u_n)$ converge vers un réel non nul si et seulement si la série $\sum_{n \ge p} u_n$ converge.
- 4. Montrer que l'équivalence de la question précédente est encore valable si l'on suppose désormais que pour tout $n \in \mathbb{N}$ tel que $n \ge p$, $-1 < u_n \le 0$.

B. Applications

- 1. (a) En utilisant la partie A, montrer que le produit infini $\prod_{n\geqslant 2} \left(1-\frac{1}{n^2}\right)$ converge vers un réel non nul.
 - (b) Pour tout $n \ge 2$, calculer $\prod_{k=2}^{n} \left(1 \frac{1}{k^2}\right)$ et en déduire la valeur de $\prod_{k=2}^{+\infty} \left(1 \frac{1}{k^2}\right)$.
- 2. Soit $x \in]0, +\infty[$. Montrer que le produit infini $\prod_{n\geqslant 1} \left(1+\frac{x}{n}\right)e^{-\frac{x}{n}}$ converge vers un réel non nul.
- 3. Retrouver, en utilisant un produit infini, que la série harmonique $\sum_{n\geq 1} \frac{1}{n}$ diverge.
- C. Étude de $\prod_{n\geqslant p}(1+u_n)$ lorsque (u_n) n'est pas nécessairement de signe constant

On suppose dans cette partie que pour tout $n \in \mathbb{N}$ tel que $n \ge p, u_n > -1$ et que la série $\sum_{n \ge p} u_n$ converge.

- 1. Montrer que si la série $\sum_{n \geq p} u_n$ converge absolument alors le produit infini $\prod_{n \geq p} (1 + u_n)$ converge vers un réel non nul.
- 2. Montrer que si la série $\sum_{n \ge p} u_n^2$ converge alors le produit infini $\prod_{n \ge p} (1 + u_n)$ converge vers un réel non nul.
- 3. Montrer que si la série $\sum_{n \ge p} u_n^2$ diverge alors le produit infini $\prod_{n \ge p} (1 + u_n)$ converge vers 0.
- 4. Application 1: Déterminer $\prod_{n=1}^{+\infty} \left(1 + (-1)^n \frac{\ln n}{\sqrt{n}}\right)$. On pourra utiliser la question A.2.(a) de l'exercice 1.
- 5. Application 2: Déterminer $\prod_{n=1}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{n}\right)$.

 On pourra, pour tout $n \in \mathbb{N}^*$, calculer $\prod_{k=2}^{2n} \left(1 + \frac{(-1)^{k+1}}{k}\right)$.