1.3.3 Trous Young source polychromatique-Exercice 7

- a-La largeur en longueur d'onde d'une raie est de l'ordre du picomètre. Quelle est la différence de marche maximale permettant l'observation de franges avec cette lumière de longueur d'onde $\lambda = 546$ nm?
- b- Cette largeur est attribuée à l'effet Doppler. D'après une formule due à Lord Rayleigh, l'ordre d'interférences maximum est donné par : $p_{max} = 1,22.10^6 \sqrt{M/T}$ où M est en g.mol⁻¹ Quelle est la température T de la source (vapeur de mercure de masse molaire M = 200 g.mol⁻¹)?
- a-La source est polychromatique. Les interférences seront visibles sans brouillage si <u>la différence de marche est</u> inférieure à la longueur de cohérence.

On a:
$$\ell_c = c\tau_c = \frac{c}{\Delta v} = \frac{\lambda^2}{\Delta \lambda}$$
 A.N: $\ell_c = 0.3 \text{ m}$

Donc la différence de marche maximale est : $\delta_{\text{max}} = 0.3 \text{ m}$.

b-p_{max} =
$$\frac{\delta_{max}}{\lambda}$$
 puis T = $\frac{(1,22.10^6)M\lambda^2}{\delta_{max}^2}$ A.N: $\underline{T \approx 1000 \text{ K}}$