PROBLÈME

On note respectivement χ_M et χ_u les polynômes caractéristiques d'une matrice carrée M de taille n et d'un endomorphisme u d'un \mathbb{R} -espace vectoriel de dimension finie.

Q1. Ce sont des résultats de cours. Donnons des justifications raisonnables en termes de longueur. Soit $(A, B, P) \in \mathcal{M}_n(\mathbb{R})^2 \times \operatorname{GL}_n(\mathbb{R})$ telles que $A = PBP^{-1}$ (A et B sont semblables). Par propriété de la trace, on a $\operatorname{tr}(A) = \operatorname{tr}((PB)P^{-1}) = \operatorname{tr}(P^{-1}PB) = \operatorname{tr}(B)$. Par multiplicativité du déterminant et comme $\det(P) \neq 0$, on peut écrire que :

$$\det(A) = \det(P)\det(B)\det(P^{-1}) = \det(P)\det(B)\frac{1}{\det(P)} = \det(B).$$

De même, pour tout $\lambda \in \mathbb{R}$, on a :

$$\chi_A(\lambda) = \det(\lambda I_n - A) = \det(P(\lambda I_n)P^{-1} - PBP^{-1}) = \det(P)\det(\lambda I_n - B)\frac{1}{\det(P)} = \chi_B(\lambda).$$

On en déduit que le polynôme $\chi_A - \chi_B$ admet une infinité de racines, donc que $\chi_A - \chi_B = 0_{\mathbb{R}[X]}$, puis $\chi_A = \chi_B$.

Le rang d'une matrice carrée est invariant par multiplication à droite ou à gauche par une matrice inversible, donc $\operatorname{rang}(B) = \operatorname{rang}(PB) = \operatorname{rang}(PBP^{-1}) = \operatorname{rang}(A)$.

Q2. Comme déterminants et polynômes caractéristiques de matrices triangulaires supérieures obtenus par produit des éléments diagonaux, on a $\det(A) = 4 = \det(B)$ – en particulier, $\operatorname{rang}(A) = \operatorname{rang}(B) = 3$ car A et B sont inversibles – et $\chi_A = (X-2)^2(X-1) = \chi_B$. On a aussi directement $\operatorname{tr}(A) = 5 = \operatorname{tr}(B)$. Comme la seule valeur propre non-simple de A et B est 2 (qui est une valeur propre double), l'une de ces matrices est diagonalisable si et seulement si le rang de cette matrice moins $2I_3$ est 1. Or, $A-2I_3$ est visiblement de rang 1 car toutes ses colonnes sont identiques (donc colinéaires), alors que $B-2I_3$ possède deux colonnes non colinéaires (la première et la dernière) : elle est de rang au moins 2 (et même exactement 2, car la deuxième est nulle). Ainsi, A est diagonalisable, donc semblable à diag(1,2,2); en revanche, B n'est pas diagonalisable. En raisonnant par l'absurde et en vertu de la transitivité de la relation de similitude, si B était semblable à A, elle serait aussi diagonalisable, ce qui n'est pas le cas. Contradiction. En définitive, A et B ne sont pas semblables.

On sait que A est diagonalisable, de spectre $\{1,2\}$, donc son polynôme minimal est (X-1)(X-2), scindé à racines simples. Comme B n'est pas diagonalisable et a même spectre, son polynôme minimal est un multiple unitaire de (X-1)(X-2) de degré strictement supérieur à deux, qui divise son polynôme caractérisique $(X-1)(X-2)^2$: c'est donc $(X-1)(X-2)^2$. Ainsi, A et B n'ont pas même polynôme minimal.

Q3. Première méthode: En notant $\epsilon_1 = e_2$, $\epsilon_2 = e_1$ et $\epsilon_3 = e_3$, on a $u(\epsilon_1) = \epsilon_2 + \epsilon_3$, $u(\epsilon_2) = \epsilon_1 + 2\epsilon_3$ et $u(\epsilon_3) = \epsilon_2$, donc $\operatorname{Mat}_{(\epsilon_1,\epsilon_2,\epsilon_3)}(u) = B$. Ainsi, A et B représentent le même endomorphisme de \mathbb{R}^3 dans deux bases différentes: A et B sont semblables.

Deuxième méthode : En développant les déterminants correspondants (en employant au besoin la règle de Sarrus), on obtient que $\chi_A = \chi_B = X^3 - 3X - 1$. La fonction $t \mapsto t^3 - 3t - 1$ est polynomiale, donc de classe \mathcal{C}^{∞} sur \mathbb{R} , de dérivée $t \mapsto 3(t^2 - 1)$, dont les zéros sont -1 et 1. On en déduit le tableau de variation suivant :

t	$-\infty$		-1		1		$+\infty$
$\chi_A'(t)$		+	0	_	0	+	
$\chi_A(t)$	$-\infty$		1		-3		$+\infty$

D'après le théorème des valeurs intermédiaires appliqué à la restriction strictement monotone de $t \mapsto \chi_A(t)$ à $]-\infty,-1[$,]-1,1[et $]1,+\infty[$ - d'images respectives $]-\infty,1[$,]-3,1[et $]-3,+\infty[$ contenant toutes 0-, $t\mapsto \chi_A(t)$ s'annule exatement trois fois sur $\mathbb{R}:\chi_A$ admet trois racines réelles distinctes, notées α,β et γ . Ce polynôme est donc scindé à racines simples sur \mathbb{R} .

On en déduit que A et B sont diagonalisables et toutes deux semblables à diag (α, β, γ) . Par transitivité de la relation de similitude, A et B sont semblables.

Q4. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1, d'endomorphisme canoniquement associé $u \in \mathcal{L}(\mathbb{R}^n)$. D'après le théorème du rang, $\ker(A)$ est de dimension n-1.

Soit (e_1, \ldots, e_{n-1}) une base de $\ker(A)$. On la complète – d'après le théorème de la base incomplète – en une base $\mathcal{B} = (e_1, \ldots, e_n)$ de \mathbb{R}^n .

Le vecteur $u(e_n)$ se décompose de manière unique dans \mathcal{B} sous la forme $u(e_n) = \sum_{i=1}^n a_i e_i$, avec $(a_1, \ldots a_n) \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$, car $u(e_n) \neq 0$, sans quoi u serait nul. Il est alors immédiat que $\operatorname{Mat}_{\mathcal{B}}(u) = U$ (avec les notations de l'énoncé).

Q5. Application: On conserve les notations de la question précédente en choisissant une base \mathcal{B} de E dans laquelle la matrice U de u est de la forme précédente. C'est possible, car la matrice de u dans une base quelconque est encore de rang 1: elle est semblable, d'après la question précédente à U; on sait alors qu'il existe une base \mathcal{B} convenable.

Un calcul direct donne $U^2 = a_n U$. Comme $U^2 \neq 0_{\mathcal{M}_n(\mathbb{R})}$ par hypothèse $(u \circ u \neq 0)$, on a $a_n \neq 0$. Ainsi, $X^2 - a_n X = X(X - a_n)$ est un polynôme annulateur de U, donc de u, scindé à racines simples. On sait alors que u est diagonalisable.

Q6. Donnons un contre-exemple. La matrice $C = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ est symétrique. Son polynôme caractéristique est X^2 d'unique racine 0, donc $\operatorname{Sp}(C) = \{0\}$.

Si A était diagonalisable, elle serait semblable à la matrice nulle, donc nulle, ce qui n'est visiblement pas le cas.

- Q7. La famille des colonnes de A est engendrée par $\begin{pmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{pmatrix}$, $\begin{pmatrix} \beta \\ \alpha \\ \beta \\ \alpha \end{pmatrix}$. Ainsi, A est de rang au plus deux.
 - Comme $(\alpha, \beta) \neq (0, 0)$ au moins l'une de ces colonnes est non nulle : A est de rang au moins 1. Enfin, A est de rang 1 si et seulement si ces deux colonnes sont proportionnelles, c'est-à-dire si et seulement si il existe $\lambda \in \mathbb{R}$ tel que $\alpha = \lambda \beta$ et $\beta = \lambda \alpha$. Si A est de rang 1, on a donc $\lambda^2 \alpha = \alpha$, d'où $\lambda \in \{-1, 1\}$ car $\alpha \neq 0$: c'est exclu par hypothèse (α et β ne sont ni égaux ni opposés). Ainsi, A n'est pas de rang 1 : c'est une matrice de rang 2.

D'après le théorème du rang, $\ker(A)$ est de dimension 2, c'est-à-dire que 0 est valeur propre de A et que le sous-espace propre associé est de dimension 2. La première (resp. la deuxième) et la troisième (resp. la dernière) colonne de A sont égales. On en déduit que (1,0,-1,0) et (0,1,0,-1) sont des éléments de $\ker(A)$. Comme ces deux vecteurs ne sont pas colinéaires, ils forment une famille libre, donc une base de l'espace $\ker(A)$ de dimension 2.

D'après le théorème spectral, la matrice A est symétrique réelle, donc diagonalisable (en base orthonormée). Exhibons des vecteurs propres associés aux valeurs propres proposées, qui sont non nulles et distinctes par hypothèse sur α et β .

Des calculs matriciels directs donnent que (1, 1, 1, 1) (resp. (1, -1, 1, -1)) est un vecteur propre de A associé à la valeur propre $2(\alpha + \beta)$ (resp. $2(\alpha - \beta)$). Pour $\lambda \in \operatorname{Sp}(A)$, notons $E_{\lambda}(A)$ l'espace propre de A associé à la valeur propre λ .

On a
$$4 \leq \dim(E_0(A)) + \dim(E_{2(\alpha+\beta)}(A)) + \dim(E_{2(\alpha-\beta)}(A)) \leq \sum_{\lambda \in \operatorname{Sp}(A)} \dim(E_{\lambda}(A)) \leq 4.$$

L'encadrement implique qu'il y a égalité partout : On a nécessairement $\operatorname{Sp}(A) = \{0, 2(\alpha+\beta), 2(\alpha-\beta)\}$ et $\dim(E_{2(\alpha+\beta)}(A)) = 1 = \dim(E_{2(\alpha+\beta)}(A))$.

On sait alors que la famille ((1,0,-1,0),(0,1,0,-1),(1,1,1,1),(1,-1,1,-1)) forme une base de \mathbb{R}^4 formée de vecteurs propres de A.

- **Q8.** Soit $u \in \mathcal{L}(\mathbb{R}^2)$ l'endomorphisme canoniquement associé à A. Notons (e_1, e_2) la base canonique de \mathbb{R}^2 de telle sorte que $u(e_1) = \lambda e_1$ et $u(e_2) = \lambda e_2 + a e_1$. On a alors $u(\frac{b}{a}e_2) = \lambda(\frac{b}{a}e_2) + b e_1$. De plus, la matrice de la famille $\mathcal{B}' = (e_1, \frac{b}{a}e_2)$ dans la base canonique est diag $(1, \frac{b}{a})$ de déterminant $\frac{b}{a} \neq 0$, donc \mathcal{B} est une base de \mathbb{R}^2 dans laquelle la matrice de u est B. On en déduit que A et B sont semblables.
- **Q9.** On a PB = AP, c'est-à-dire RB + iSB = AR + iAS et, par unicité des parties réelles et imaginaires des coefficients matriciels, RB = AR et SB = AS.
- Q10. Comme R et S sont réelles, la fonction $f\colon x\mapsto \det(R+xS)$ est à valeurs réelles. C'est aussi une fonction polynomiale, car le déterminant est une application polynomiale en les coefficients matriciels. On peut donc considérer le polynôme P associé, qui est à coefficients réels, mais qu'on peut voir comme un élément de $\mathbb{C}[X]$. Ce polynôme ne s'annule pas en i, car $\det(R+iS)\neq 0$ en vertu du fait que P est inversible : $P\neq 0_{\mathbb{C}[X]}$. On en déduit que $P\neq 0_{\mathbb{R}[X]}$, donc que f n'est pas identiquement nulle. Il existe donc $x\in\mathbb{R}$ tel que $\det(R+xS)=P(x)=f(x)\neq 0$, c'est-à-dire que R+xS est inversible.
- Q11. Par combinaison linéaire et d'après la question 16, on a (R + xS)B = A(R + xS). La matrice $P_0 = R + xS$ est inversible d'après la question 17. On peut donc écrire, en multipliant la relation précédente à gauche par P_0^{-1} , que $B = P_0^{-1}AP_0$, c'est-à-dire que A et B sont semblables (dans $\mathcal{M}_n(\mathbb{R})$).
- Q12. Application: Le calcul montre que $\chi_B = X^3 + X = X(X i)(X + i)$. Soit $A \in \mathcal{M}_3(\mathbb{R})$ de polynôme caractéristique $X^3 + X$. Les matrices A et B sont diagonalisables sur \mathbb{C} car leur polynôme caractéristique est scindé à racines simples sur \mathbb{C} . Elles sont semblables entre-elles car semblables à la matrice diag(0, i, -i) dans $\mathcal{M}_3(\mathbb{C})$. D'après le résultat de la question 18, A et B sont encore semblables dans $\mathcal{M}_3(\mathbb{R})$.

- Q13. Soit $(A, B) \in (\mathcal{M}_2(\mathbb{R}))^2$ ayant même polynôme caractéristique et même polynôme minimal. Si le polynôme minimal commun est de degré 1, A et B sont des matrices d'homothéties et sont donc égales car leur spectre est le même singleton : elles sont semblables. Supposons désormais que le polynôme minimal commun à A et B soit de degré 2. On peut remarquer que, comme il est unitaire et divise le polynôme caractéristique commun, il coïncide avec celui-ci. L'hypothèse sur le polynôme caractéristique est donc inutile dans ce cas.
 - Si χ_A est scindé à racines simples sur \mathbb{C} , alors A et B sont semblables dans $\mathcal{M}_2(\mathbb{C})$ à la même matrice diagonale à deux éléments diagonaux distincts : elles sont donc semblables entre-elles dans $\mathcal{M}_2(\mathbb{C})$, donc, d'après la question 18, elles sont semblables dans $\mathcal{M}_2(\mathbb{R})$.
 - Sinon, χ_A admet une racine double dans \mathbb{C} , qui est son propre conjugué, car χ_A est un polynôme à coefficients réels. Ainsi, χ_A admet une racine réelle double λ . Il est scindé, donc A et B sont trigonalisables dans $\mathcal{M}_2(\mathbb{R})$ et non diagonalisables (car leur polynôme minimal n'est pas scindé à racines simples : ce n'est pas $X \lambda$, mais $(X \lambda)^2$). Ainsi A et B sont respectivement semblables à des matrices de la forme de celles de la question 15. Par transitivité de la relation de similitude, A et B sont semblables.

On a $A^2 = 0_{\mathcal{M}_4(\mathbb{R})} = B^2$. Comme A et B ne sont pas des matrices d'homothéties, le polynôme minimal de A et B est X^2 . Elles ont aussi même polynôme caractéristique, qui est X^4 (déterminant triangulaire supérieur). Enfin, A et B ne sont pas semblables car elles ne sont pas de même rang. En effet, A est de rang 2 (deux colonnes non nulles et non colinéaires) et B est de rang 1 (une seule colonne non nulle).