Devoir Maison n° 6. Pour le 14 octobre.

Chapitre 5 exercice 1 : Bolzano-Weierstrass avec vue sur la mer

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle bornée.

Pour tout $n \in \mathbb{N}$, on dit que n a vue sur la mer lorsque :

$$\forall p \geqslant n : u_p \leqslant u_n$$

On note A l'ensembles des entiers qui ont vue sur la mer.

- 1. On suppose dans cette question que A est infini. Montrer qu'il existe une suite extraite de u qui est décroissante.
- 2. On suppose à présent que l'ensemble A est fini. Montrer qu'il existe une suite extraite de u qui est croissante.
- 3. Conclure.

Chapitre 5 exercice 4

Soit $\ell^{\infty}(\mathbb{K})$ l'ensemble des suites de $\mathbb{K}^{\mathbb{N}}$ bornées et

$$\ell^1(\mathbb{K}) = \left\{ u \in \mathbb{K}^{\mathbb{N}} \mid \sum u_n \text{ converge absolument} \right\}.$$

- **1.** Montrer que $N_1(u) = \sum_{n=0}^{+\infty} |u_n|$ définit une norme sur $\ell^1(\mathbb{K})$.
- **2.** Montrer que $\ell^1(\mathbb{K}) \subset \ell^{\infty}(\mathbb{K})$ et comparer les normes N_1 et N_{∞} sur $\ell^1(\mathbb{K})$. Ces normes sont-elles équivalentes?