Exercices

Exercice 1. Étudier la convergence simple et la convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}, f_n: \begin{vmatrix} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{nxe^{-nx}}{1-e^{-x}}. \end{vmatrix}$

Exercice 2. Étudier la convergence simple et la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ de fonctions de \mathbb{C} dans \mathbb{C} définies par :

$$f_n: z \mapsto \frac{nz}{1+n|z|}.$$

Sur quelles parties de $\mathbb C$ la convergence est-elle uniforme ?

Exercice 3. On pose pour tout $n \in \mathbb{N}^*$ la fonction $f_n : x \mapsto n \sin(x) \cos^n(x) \sin\left[0; \frac{\pi}{2}\right]$.

- 1. Étudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$.
- 2. Pour tout $n \in \mathbb{N}^*$, calculer:

$$I_n = \int_0^{\frac{\pi}{2}} f_n(x) \, \mathrm{d}x.$$

La suite $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur $[0;\frac{\pi}{2}]$?

3. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur tout segment de $[0;\frac{\pi}{2}]$.

Exercice 4.

- 1. Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$ de fonctions définies sur \mathbb{R} par : $f_n: x\mapsto \frac{2^n x}{1+n^{2n}x^2}$.
- 2. Calculer:

$$\int_0^1 f_n(x) \, \mathrm{d}x.$$

- 3. Étudier la convergence uniforme de $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R} .
- 4. Sur quelles parties de \mathbb{R} la convergence est-elle uniforme?

Exercice 5. Soit $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de fonctions bornées sur une partie A d'un espace vectoriel normé E et à valeurs dans \mathbb{K} .

On suppose que $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ convergent uniformément sur A.

- 1. Montrer que la suite $(f_n \times g_n)_{n \in \mathbb{N}}$ converge uniformément sur A.
- 2. Le résultat reste-t-il vrai si les fonctions ne sont pas supposées bornées?

Exercice 6. Soit $f \in \mathcal{C}([0;1],\mathbb{R})$. Déterminer : $\lim_{n \to +\infty} \int_0^1 f\left(\frac{x}{n}\right) dx$.

Indication : on pourra poser $f_n: x \mapsto f\left(\frac{x}{n}\right)$.

Exercice 7. Soit E et F deux espaces vectoriels normés, avec F de dimension finie. Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\mathcal{C}(\overline{A},F)$ où $A\in\mathcal{P}(E)$.

Montrer que si $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A, alors elle converge uniformément sur \overline{A} .

Exercice 8. Étudier la convergence simple, uniforme et normale de la série de fonctions $\sum f_n$ avec pour tout $n \in \mathbb{N}^*$:

$$f_n: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
 $x \longmapsto \frac{(-1)^n}{n+x}$

Exercice 9. Montrer que la fonction

$$f : \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}$$

$$x \longmapsto \sum_{n=1}^{+\infty} \frac{e^{-x\sqrt{n}}}{n}$$

est bien définie et continue sur \mathbb{R}_+^* .

Exercice 10. On considère la fonction $f: x \mapsto \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$.

- 1. Déterminer l'ensemble de définition \mathcal{D}_f de f.
- 2. Étudier la continuité de f sur \mathcal{D}_f .
- 3. La série converge-t-elle normalement sur \mathbb{R} ?
- 4. Calculer $\lim_{x \to +\infty} f(x)$. Indication : comparaison série-intégrale.
- 5. La série converge-t-elle uniformément sur \mathbb{R} ?

Exercice 11. fonction de ζ de Riemann.

On considère la fonction

$$\zeta :]1; +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

- 1. Montrer que ζ est bien définie et continue sur $]1; +\infty[$.
- 2. Déterminer $\lim_{x\to 1^+} \zeta(x)$.
- 3. Montrer que ζ est de classe \mathcal{C}^{∞} sur $]1; +\infty[$ et calculer ses dérivées.

Exercice 12. Montrer que $\lim_{n\to +\infty} \int_0^{2\pi} f(t) e^{int} dt = 0$ lorsque :

- 1. $f \in C^1([0; 2\pi], \mathbb{R});$
- 2. $f \in \mathcal{C}_m([0;2\pi],\mathbb{R})$.

Exercice 13. Soit A une partie d'un espace vectoriel normé E; F un espace vectoriel normé de dimension finie et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de \overline{A} dans F.

Montrer que si $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A, alors elle converge uniformément sur \overline{A} .

Exercice 14. quand la convergence simple entraı̂ne la convergence uniforme. Soit $k \in \mathbb{R}^+$ et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions k-lipschitziennes sur [a;b] à valeurs dans \mathbb{C} . On suppose que $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f sur [a;b].

- 1. Montrer que $(f_n)_{n\in\mathbb{N}}$ est k-lipschitzienne sur [a;b].
- 2. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [a;b].

Exercices CCINP

Exercice 15 (CCINP 8).

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante positive de limite nulle.
 - (a) Démontrer que la série $\sum (-1)^k u_k$ est convergente.

Indication: on pourra considérer $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ avec $S_n = \sum_{k=0}^{n} (-1)^k u_k$.

- (b) Donner une majoration de la valeur absolue du reste de la série $\sum (-1)^k u_k$.
- 2. On pose : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n(x) = \frac{(-1)^n e^{-nx}}{n}$.
 - (a) Étudier la convergence simple sur \mathbb{R} de la série de fonctions $\sum_{n\geq 1} f_n$.
 - (b) Étudier la convergence uniforme sur $[0, +\infty[$ de la série de fonctions $\sum_{n\geqslant 1} f_n$.

Exercice 16 (CCINP 9).

1. Soit X un ensemble, (g_n) une suite de fonctions de X dans \mathbb{C} et g une fonction de X dans \mathbb{C} .

Donner la définition de la convergence uniforme sur X de la suite de fonctions (g_n) vers la fonction g.

- 2. On pose $f_n(x) = \frac{n+2}{n+1} e^{-nx^2} \cos(\sqrt{nx})$.
 - (a) Étudier la convergence simple de la suite de fonctions (f_n) .
 - (b) La suite de fonctions (f_n) converge-t-elle uniformément sur $[0, +\infty[$?
 - (c) Soit a>0. La suite de fonctions (f_n) converge-t-elle uniformément sur $[a,+\infty[\,?\,]$
 - (d) La suite de fonctions (f_n) converge-t-elle uniformément sur $]0, +\infty[$?

Exercice 17 (CCINP 10). On pose $f_n(x) = (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x}$.

- 1. Démontrer que la suite de fonctions (f_n) converge uniformément sur [0,1].
- 2. Calcular $\lim_{n \to +\infty} \int_{0}^{1} (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x} dx$.

Exercice 18 (CCINP 11).

1. Soit X une partie de \mathbb{R} , (f_n) une suite de fonctions de X dans \mathbb{R} convergeant simplement vers une fonction f.

On suppose qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X telle que la suite $(f_n(x_n)-f(x_n))_{n\in\mathbb{N}}$ ne tende pas vers 0.

Démontrer que la suite de fonctions (f_n) ne converge pas uniformément vers f sur X.

- 2. Pour tout $x \in \mathbb{R}$, on pose $f_n(x) = \frac{\sin(nx)}{1 + n^2x^2}$.
 - (a) Étudier la convergence simple de la suite (f_n) .
 - (b) Étudier la convergence uniforme de la suite (f_n) sur $[a, +\infty[$ (avec a > 0), puis sur $]0, +\infty[$.

Exercice 19 (CCINP 16). On considère la série de fonctions de terme général u_n définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \ u_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}.$$

On pose, lorsque la série converge,
$$S(x) = \sum_{n=1}^{+\infty} \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{n} \right].$$

- 1. Démontrer que S est dérivable sur [0,1].
- 2. Calculer S'(1).

Exercice 20 (CCINP 48).

 $C^{0}\left(\left[0,1\right],\mathbb{R}\right)$ désigne l'espace vectoriel des fonctions continues sur $\left[0,1\right]$ à valeurs dans \mathbb{R} .

Soit
$$f \in C^0([0,1],\mathbb{R})$$
 telle que : $\forall n \in \mathbb{N}, \int_0^1 t^n f(t) dt = 0.$

- 1. Énoncer le théorème de Weierstrass d'approximation par des fonctions polynomiales.
- 2. Soit (P_n) une suite de fonctions polynomiales convergeant uniformément sur le segment [0,1] vers f.
 - (a) Montrer que la suite de fonctions $(P_n f)$ converge uniformément sur le segment [0,1] vers f^2 .
 - (b) Démontrer que $\int_0^1 f^2(t) dt = \lim_{n \to +\infty} \int_0^1 P_n(t)f(t)dt$.
 - (c) Calculer $\int_{0}^{1} P_{n}(t) f(t) dt$.
- 3. En déduire que f est la fonction nulle sur le segment [0,1] .

Exercice 21 (CCINP 53). On considère, pour tout entier naturel n non nul, la fonction f_n définie sur \mathbb{R} par $f_n(x) = \frac{x}{1 + n^4 x^4}$.

1. (a) Prouver que $\sum_{n\geqslant 1} f_n$ converge simplement sur \mathbb{R} .

On pose alors :
$$\forall x \in \mathbb{R}, f(x) = \sum_{n=1}^{+\infty} f_n(x).$$

(b) Soit $(a, b) \in \mathbb{R}^2$ avec 0 < a < b.

$$\sum_{n\geq 1} f_n \text{ converge-t-elle normalement sur } [a,b]? \text{ sur } [a,+\infty[?]]$$

- (c) $\sum_{n\geqslant 1} f_n$ converge-t-elle normalement sur $[0,+\infty[\,?\,]$
- 2. Prouver que f est continue sur \mathbb{R}^* .
- 3. Déterminer $\lim_{x \to +\infty} f(x)$.