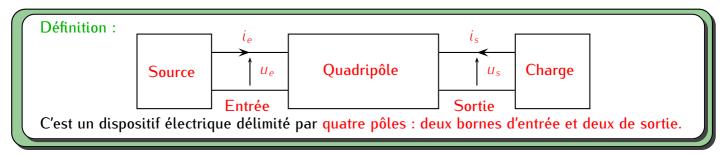
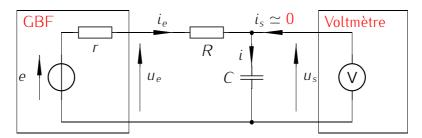
EC_3 Filtres électriques linéaires du 1er et 2nd ordre

I Généralités sur les filtres

1. Quadripôles



Exemple : quadripôle RC avec C en sortie ouverte (charge d'impédance quasiment infinie : voltmètre ou oscillo).



Caractéristiques

- Convention d'algébrisation des tensions et intensités : cf. dessin pour les sens des courants et des tensions.
- Un quadripôle est passif s'il ne contient aucune source. Sinon, il est actif.
- Gain en tension : $G = \frac{U_s}{U_e}$. On peut aussi définir un gain en intensité ou en puissance.

Définition : un quadripôle est linéaire s'il ne comporte que des éléments linéaires (R, L, C et sources linéaires).

En conséquence,

• Le signal d'entrée u_e et le signal de sortie u_s sont reliés par une équation différentielle linéaire à cœfficients constants du type :

$$D_n \frac{d^n u_s(t)}{dt^n} + D_{n-1} \frac{d^{n-1} u_s(t)}{dt^{n-1}} + \dots + D_0 u_s(t) = N_m \frac{d^m u_e(t)}{dt^m} + \dots + N_0 u_e(t)$$

Le plus grand des entiers n ou m définit l'ordre du circuit.

Remarque : en général, ce dernier est inférieur ou égal au nombre de dipôles réactifs (condensateurs ou bobines) qu'il contient.

Exemple: circuit RC précédent $i_s=0$ et donc $i_e=i=C\frac{du_s}{dt}=\frac{u_e-u_s}{R}$ d'où l'équation différentielle linéaire du premier ordre

$$\frac{du_s}{dt} + \frac{1}{RC}u_s = \frac{1}{RC}u_e$$

• Si u_e est sinusoïdal, alors toutes les autres grandeurs le sont également (après le régime transitoire). Par la suite, on notera

$$u_e = U_e \cos(\omega t + \varphi_e) \Rightarrow \underline{u_e} = \underline{U_e} e^{j\omega t}$$
 et $u_s = U_s \cos(\omega t + \varphi_s) \Rightarrow \underline{u_s} = \underline{U_s} e^{j\omega t}$

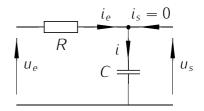
• Si aux tensions d'entrée u_{e1} et u_{e2} correspondent les tensions de sortie u_{s1} et u_{s2} , alors, à la tension d'entrée $\alpha u_{e1} + \beta u_{e2}$ (α et β réels), correspond la tension de sortie $\alpha u_{s1} + \beta u_{s2}$. C'est à dire que si on connaît la réponse d'un filtre pour tout signal sinusoïdal pur, on peut en déduire la réponse à un signal quelconque car ce dernier est décomposable en une somme de signaux sinusoïdaux : Fourier.

2. Fonction de transfert en régime sinusoïdal forcé

Définition : on définit la fonction de transfert (ou transmittance) par la grandeur complexe :

$$\underline{H}(j\omega) = \frac{\underline{u}_s}{\underline{u}_e} = \frac{\underline{U}_s e^{j\omega t}}{\underline{U}_e e^{j\omega t}} = \frac{\underline{U}_s}{\underline{U}_e} = \frac{\underline{U}_s}{\underline{U}_e} e^{j(\varphi_s - \varphi_e)}$$

Exemple: quadripôle RC en sortie ouverte $i_e = i$ et on retrouve un pont diviseur de tension :



$$\frac{\underline{U}_s}{\underline{U}_e} = \underline{H}(j\omega) = \frac{\underline{Z}_C}{R + \underline{Z}_C}$$
avec $\underline{Z}_C = \frac{1}{jC\omega} \Rightarrow \underline{H}(j\omega) = \frac{1}{1+jRC\omega} = \frac{1}{1+j\frac{\omega}{2}}$ où $\omega_0 = \frac{1}{RC}$

Relation entre équation différentielle et fonction de transfert : remplaçons u_s et u_e par leurs expressions dans l'équation différentielle en notation complexe qui caractérise le circuit :

$$D_{n}\frac{d^{n}u_{s}(t)}{dt^{n}} + D_{n-1}\frac{d^{n-1}u_{s}(t)}{dt^{n-1}} + \dots + D_{0}\underline{u_{s}(t)} = N_{m}\frac{d^{m}u_{e}(t)}{dt^{m}} + \dots + N_{0}\underline{u_{e}(t)}$$

or, en notation complexe, la dérivée n^{ieme} revient a multiplier par $(j\omega)^n$, il vient donc :

$$D_{n}(j\omega)^{n}\underline{u_{s}(t)} + D_{n-1}(j\omega)^{n-1}\underline{u_{s}(t)} + \dots + D_{0}\underline{u_{s}(t)} = N_{m}(j\omega)^{m}\underline{u_{e}(t)} + \dots + N_{0}\underline{u_{e}(t)}$$

$$\Rightarrow \frac{\underline{u_{s}(t)}}{\underline{u_{e}(t)}} = \underline{H(j\omega)} = \frac{N_{0} + j\omega N_{1} + \dots + (j\omega)^{m}N_{m}}{D_{0} + j\omega D_{1} + \dots + (j\omega)^{n}D_{n}} = \frac{\underline{N}(j\omega)}{\underline{D}(j\omega)}$$

Les racines de $\underline{N}(j\omega) = 0$ sont les zéros de $\underline{H}(j\omega)$ et les racines de $\underline{D}(j\omega) = 0$ sont ses pôles.

Stabilité d'un circuit linéaire : un circuit est dit stable lorsque sa réponse s(t) à un signal d'entrée e(t) restant borné ne diverge pas quels que soient les paramètres de e(t) et les conditions initiales.

ullet Pour un système d'ordre 1 ou 2, les cœfficients D_i de l'équation différentielle homogène

$$D_n \frac{d^n s(t)}{dt^n} + D_{n-1} \frac{d^{n-1} s(t)}{dt^{n-1}} + \dots + D_0 \underline{s(t)} = 0$$
 doivent être du même signe.

• En RSF, $\underline{H(j\omega)}$ ne doit pas admettre de pôles réels (ω tels que $\underline{H(j\omega)}$ devienne infinie) et d'autre part, lorsque $\omega \to \infty$, $|H(j\omega)|$ ne doit pas tendre vers l'infini ce qui impose $m \le n$.

Exemple: circuit *RC* en sortie ouverte.

On peut retrouver l'expression de $H(j\omega)$ à partir de l'équation différentielle.

$$\frac{du_s}{dt} + \omega_0 u_s = \omega_0 u_e \Rightarrow \underline{H(j\omega)} = \frac{\omega_0}{\omega_0 + j\omega} = \frac{1}{1 + j\frac{\omega}{\omega_0}}$$
 Filtre du premier ordre.

Remarque : on pose parfois (en SI) $j\omega = p$, la variable de Laplace. La fonction de transfert s'écrit alors de façon générale :

$$\underline{H}(p) = \frac{N_0 + pN_1 + \dots + p^m N_m}{D_0 + pD_1 + \dots + p^n D_n} = \frac{\sum_{k=0}^m N_k p^k}{\sum_{k=0}^n D_k p^k}$$

Définitions : Gain en tension et déphasage : Si on écrit $\underline{H}(j\omega)$ sous la forme

$$\underline{H}(j\omega) = \underline{G}(\omega)e^{j\varphi(\omega)}$$

• $G(\omega)$ est le module de $\underline{H}(j\omega)$

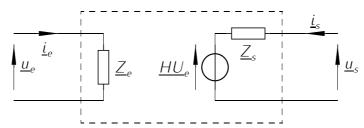
$$G(\omega) = |\underline{H}(j\omega)| = \frac{|\underline{U}_s|}{|\underline{U}_e|} = \frac{U_s}{U_e}$$
 est le gain en tension.

• $\varphi(\omega)$ est l'argument de $\underline{H}(j\omega)$

$$\varphi = \arg(\underline{H}(j\omega)) = \frac{\arg(\underline{U_s})}{\arg(\underline{U_e})} = \varphi_s - \varphi_e$$
 est l'avance de phase algébrique de u_s sur u_e

3. Modélisation

Du point de vue de l'utilisateur, un filtre se modélise de la façon suivante :



On définit l'impédance d'entrée $\underline{Z}_e = \frac{\underline{U}_e}{\underline{I}_e}$ et l'impédance de sortie \underline{Z}_s par la relation : $\underline{\underline{U}}_s = \underline{H}\underline{U}_e + \underline{Z}_s\underline{I}_s$.

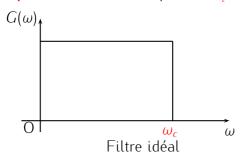
4. Filtres électriques linéaires

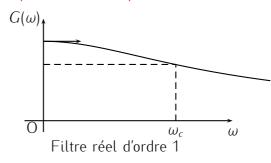
4.a. Rappels

Définition : Un filtre électrique linéaire est un quadripôle linéaire qui permet de transmettre sélectivement certaines fréquences. On parle de bande passante (intervalle des fréquences telles que $G \geq \frac{G_{\max}}{\sqrt{J}}$) et de bande coupée.

4.b. Principaux types de filtres linéaires

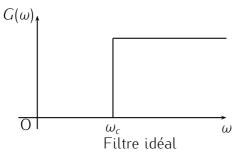
Filtres passe bas : bande passante $[0; \omega_c]$ où ω_c est la pulsation de coupure.

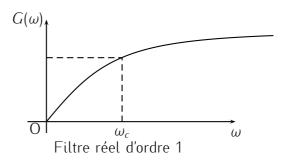




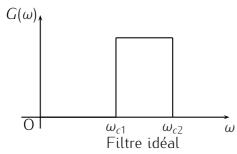
On tend vers un filtre idéal en \uparrow l'ordre du filtre (mais plus de composants \rightarrow plus coûteux et moins robuste).

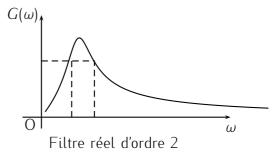
Filtres passe haut : bande passante $[\omega_c; +\infty[$.





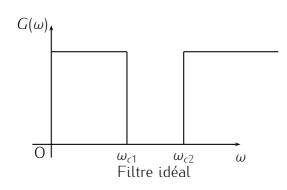
Filtres passe bande : bande passante $[\omega_{c1}; \omega_{c2}]$ avec ω_{c1} et ω_{c2} les pulsations de coupure.

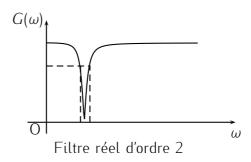




Filtres réjecteur de bande (coupe-bande) : $[\omega_{c1}; \omega_{c2}]$ est la bande coupée.

PCSI₂ 2024 – 2025 Page 4/12





Filtres déphaseur : garde G constant mais il produit un déphasage entre u_s et u_e .

4.c. Diagrammes de Bode

Gain en décibel G_{dB} : Le gain en tension $G = |\underline{H}(j\omega)| = \frac{U_s}{U_e}$ peut varier dans un très large domaine si le filtre est actif.

Définition : on définit le gain en décibels (dB) par la relation :

$$G_{dB} = 20 \log G(\omega) = 20 \log(|\underline{H}(j\omega)|)$$

Bande passante à -3 dB: soit $G(\max)$ le gain maximal en tension du filtre. Les pulsations de coupure $\omega_c=2\pi f_c$ sont les pulsations pour lesquelles

$$G = \frac{G(\max)}{\sqrt{2}} \iff G_{dB} = 20 \log G = 20 \log \frac{G(\max)}{\sqrt{2}} = 20 \log G(\max) - 20 \log \sqrt{2}$$

 $\Rightarrow \omega = \omega_c \iff G_{dB} = G_{dB}(\max) - 3 \text{ dB}$ c'est le gain en dB maximum -3 dB .

Définition : diagrammes de Bode d'un filtre : c'est la représentation de sa fonction de transfert $\underline{H}(j\omega) = G(\omega)e^{j\varphi(\omega)}$: deux courbes.

Afin de visualiser les variations de $G(\omega)$ et $\varphi(\omega)$ sur un grand domaine de fréquence, on trace ces fonctions en fonction de log ω .

Courbe de réponse en Gain : Courbe de réponse en phase : G_{dB} en fonction de log ω φ en fonction de $\log \omega$ $\log \omega$ $\log \omega$

Échelle logarithmique

Échelle semi-logarithmique

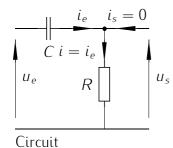
Avantages:

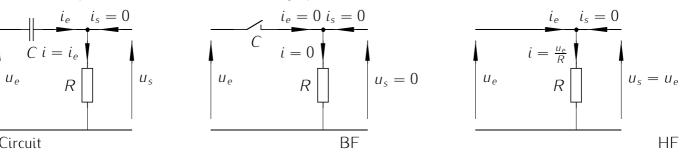
- Grande lisibilité pour une plage de fréquences très vaste.
- Tracé asymptotique très facile et fiable (voir plus loin).

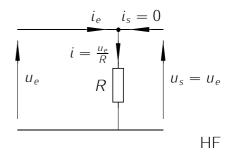
Exemples de filtres du premier ordre Ш

- 1. Filtre passe bas du premier ordre : exemple du quadripôle RC.
- 2. Filtre passe haut du premier ordre.
- Montage et comportement asymptotique

Il suffira de permuter R et C dans le montage précédent :







- Pour $\omega \to 0$, le condensateur se comporte comme un interrupteur ouvert, i=0 et $U_s=Ri=0$.
- Pour $\omega \to \infty$, le condensateur se comporte comme un interrupteur fermé et $U_s = U_e$.

Il s'agit d'un filtre passe haut.

2.b. Fonction de transfert

 $i_e = i$ et on retrouve un pont diviseur de tension :

$$\underline{H}(j\omega) = \frac{\underline{R}}{R + \underline{Z_C}} = \frac{jRC\omega}{1 + jRC\omega} = \frac{j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}} = \frac{jx}{1 + jx} \quad \text{avec } x = \frac{\omega}{\omega_0} \quad \omega_0 = \frac{1}{RC}$$

La fonction de transfert d'un filtre passe bas du premier ordre peut toujours se mettre sous la forme :

$$\underline{H}(j\omega) = \frac{jxG_0}{1+jx}$$
 Forme canonique

avec :

- $x = \frac{\omega}{\omega_0}$ la pulsation réduite (sans dimension).
- G_0 la valeur maximale de G, atteint quand $x \gg 1$

2.c. Fréquence de coupure :

$$G(\omega) = |\underline{H}(j\omega)| = |\frac{jx}{1+jx}| = \frac{|jx|}{|1+jx|} = \frac{x}{\sqrt{1+x^2}}$$

et $x_c = \frac{\omega_c}{\omega_0}$ est telle que

$$G(x_c) = \frac{G(\max)}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow \frac{x}{\sqrt{1 + x_c^2}} = \frac{1}{\sqrt{2}} \Rightarrow x_c = 1 \Rightarrow \omega_c = \omega_0 = \frac{1}{RC}$$

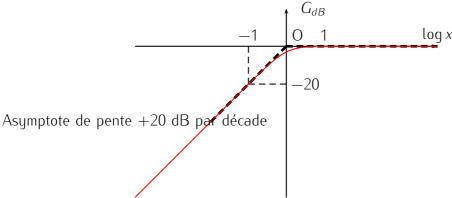
2.d. Diagrammes de Bode :

Réponse en gain

$$G_{dB} = 20 \log G = 20 \log \frac{x}{\sqrt{1+x^2}} = 20 \log x - 10 \log(1+x^2)$$

Diagramme asymptotique :

- Asymptote basses fréquences : Quand $\omega \ll \omega_0$, $x \to 0$, $\log x \to -\infty$ et $G_{dB} \to 20 \log x 20 \log 1 = 20 \log x$: droite de pente + 20 dB/décade.
- Asymptote hautes fréquences : Quand $\omega \gg \omega_0$, $x \to \infty$, $\log x \to \infty$ et $1 + x^2 \to x^2$ soit $G_{dB} = 20 \log x 10 \log(1 + x^2) \to 20 \log x 10 \log x^2 = 0$: droite horizontale.

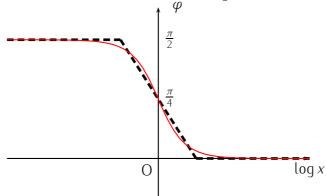


L'écart maximum entre les asymptotes et la courbe réelle est de -3 dB, il est atteint en x=1.

Réponse en phase

$$\varphi = \arg(\underline{H}(j\omega)) = \arg\frac{jx}{1+jx} = \arg jx - \arg(1+jx) \Rightarrow \varphi = \frac{\pi}{2} - \arctan x$$

soit la même courbe que plus haut, simplement translatée de $\frac{\pi}{2}$.



2.e. Caractère dérivateur du filtre

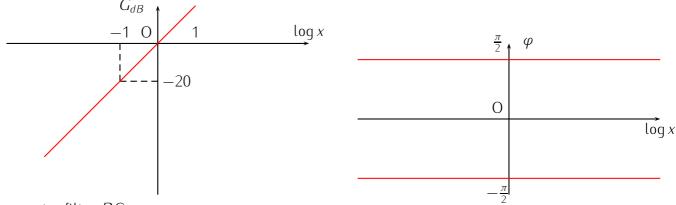
Un filtre électrique se comporte en dérivateur si $u_s(t)=\pm\frac{1}{\omega_0}\frac{du_e(t)}{dt}$, avec ω_0 une constante. En régime sinusoïdal, cela revient à $\underline{u_s}=\pm\frac{1}{\omega_0}j\omega\underline{u_e}$ soit une fonction de transfert

$$\underline{H}(j\omega) = \frac{\underline{u_s}}{\underline{u_e}} = \pm j \frac{\omega}{\omega_0} = \pm jx$$

avec x la pulsation réduite $x=\frac{\omega}{\omega_0}$. Un dérivateur est donc caractérisé par :

- Un gain $G_{dB} = 20 \log x$: droite de +20 dB par décade.
- Une phase $\varphi = \pm \frac{\pi}{2}$.

D'où le diagramme de Bode :



Pour notre filtre RC,

$$\underline{H}(j\omega) = \frac{jx}{1+jx}$$

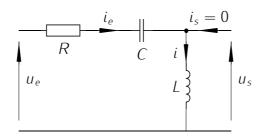
Nous obtenons ces caractéristiques pour $x \ll 1$, en effet, $1 + jx \simeq 1$ et $\underline{H}(j\omega) \simeq jx$.

On vérifiera en TP que ce circuit devient dérivateur si $\omega < \frac{\omega_0}{10}.$

III Exemples de filtres du deuxième ordre

- 1. Filtre passe bas d'ordre deux
- 2. Filtre passe haut d'ordre deux.
- 2.a. Montage

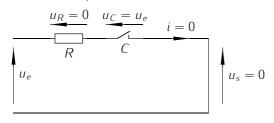
Circuit RLC avec L en sortie ouverte.

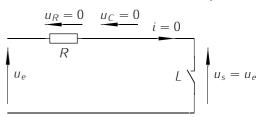


2.b. Comportement asymptotique

Basses fréquences

Hautes fréquences





Conclusion: il s'agit bien d'un filtre passe haut.

2.c. Fonction de transfert

La sortie étant ouverte, on retrouve un pont diviseur de tension.

$$\underline{H}(j\omega) = \underline{\frac{u_s}{\underline{u_e}}} = \underline{\frac{Z_L}{\underline{Z}}} = \frac{jL\omega}{R + jL\omega + \frac{1}{jC\omega}} = \frac{LC(j\omega)^2}{RC\omega j - LC\omega^2 + 1} = \frac{-x^2}{1 - x^2 + j\frac{x}{Q}}$$

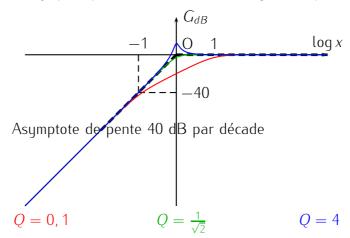
2.d. Diagramme de Bode

Réponse en gain

$$G(\omega) = |\underline{H}(j\omega)| = \frac{x^2}{\sqrt{(1-x^2)^2 + \frac{x^2}{Q^2}}}$$

Gain en décibels : $G_{dB} = 20 \log G(\omega) = 20 \log \frac{x^2}{\sqrt{(1-x^2)^2 + \frac{x^2}{Q^2}}} = 40 \log x - 10 \log((1-x^2)^2 + \frac{x^2}{Q^2})$.

- Asymptote en basses fréquences : $\omega \to 0$, $x \to 0$ et $\log x \to -\infty$ $G_{dB} = 40 \log x 10 \log((1 x^2)^2 + \frac{x^2}{Q^2}) \simeq 40 \log x 10 \log 1 = 0$: droite de pente 40 dB par décade.
- Asymptote en hautes fréquences : $\omega \to \infty$, $x \to \infty$ et $\log x \to \infty$ $(1 x^2)^2 \simeq x^4 \gg \frac{x^2}{Q^2}$) d'où $G_{dB} = 40 \log x 10 \log((1 x^2)^2 + \frac{x^2}{Q^2}) \simeq 40 \log x 10 \log x^4 = 0$: asymptote horizontale.
- Pour x=1 soit $\omega=\omega_0$, $G_{dB}=40\log 1-10\log((1-1^2)^2+\frac{1^2}{Q^2})=-10\log\frac{1}{Q^2}=20\log Q$ L'écart entre la courbe asymptotique et la courbe réelle augmente quand Q augmente.



Remarques:

- La courbe du passe haut est la symétrique de celle du passe bas par rapport à l'axe vertical.
- On a une résonance en tension aux bornes de la bobine si $Q > \frac{1}{\sqrt{2}}$.

• Pour un bon passe haut, il faut que G soit constant après ω_c la pulsation de coupure, on aura donc intérêt à prendre $Q \simeq \frac{1}{\sqrt{2}}$.

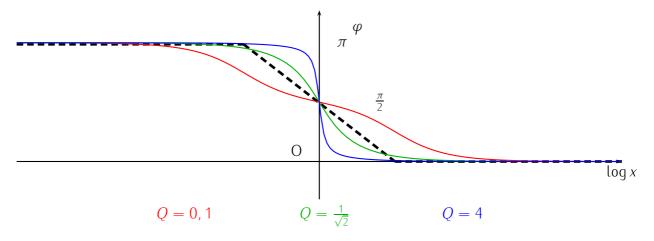
Réponse en phase

$$\varphi = \arg(\underline{H}(j\omega)) = \arg(\frac{-x^2}{1 - x^2 + j\frac{x}{O}}) = \arg(\frac{jx^2}{-j(1 - x^2) + \frac{x}{O}}) = \frac{\pi}{2} - \arctan Q(x - \frac{1}{x})$$

On remarque que $\varphi_{PH}=\pi+\varphi_{PB}$, on déduit donc la courbe du passe haut de celle du passe bas en ajoutant simplement π .

Diagramme asymptotique :

- Asymptote basses fréquences : $x \to 0$, $\log x \to -\infty$, $\underline{H} \to -x^2$ et $\varphi \to \pi$: droite horizontale.
- Pour $\omega = \omega_0$, x = 1, $\log x = 0$ et $\varphi = \frac{\pi}{2}$.
- Asymptote hautes fréquences, $x \to \infty$, $\log x \to \infty$, $\underline{H} \to 1$ et $\varphi \to 0$: droite horizontale.

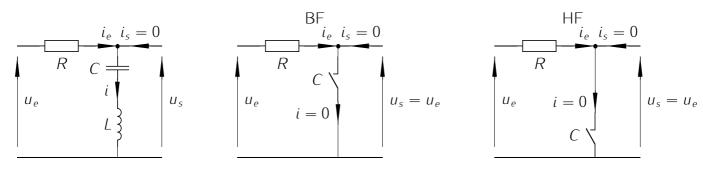


3. Filtre passe bande d'ordre deux

4. Filtre coupe bande d'ordre deux

4.a. Montage et comportement asymptotique

Circuit RLC avec LC en sortie ouverte.



- Aux basses fréquences : le condensateur se comporte comme un interrupteur ouvert, on a donc $i=0,\,u_R=0$ et $u_s=u_e$.
- Aux hautes fréquences : la bobine se comporte comme un interrupteur ouvert, on a donc i=0, $u_R=0$ et $u_S=Ri=u_e$.

Conclusion: il s'agit bien d'un filtre coupe bande.

4.b. Fonction de transfert

$$\underline{H}(j\omega) = \frac{\underline{U_s}}{\underline{U_e}} = \frac{Z_{LC}}{\underline{Z}} = \frac{1 - LC\omega^2}{RC\omega j - LC\omega^2 + 1} = \frac{1 - x^2}{1 - x^2 + j\frac{x}{Q}}$$

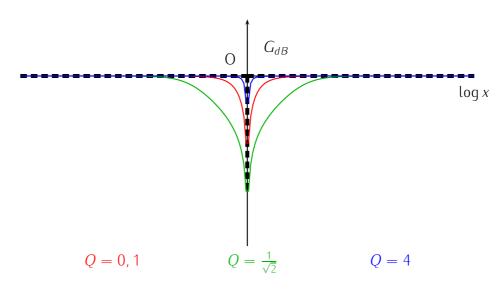
4.c. Diagramme de Bode

Réponse en gain

$$G(\omega) = |\underline{H}(j\omega)| = \frac{|1 - x^2|}{\sqrt{(1 - x^2)^2 + \frac{x^2}{Q^2}}}$$

Gain en décibels : $G_{dB} = 20 \log G(\omega) = 20 \log \frac{|1-x^2|}{\sqrt{(1-x^2)^2 + \frac{x^2}{Q^2}}} = 20 \log |1-x^2| - 10 \log((1-x^2)^2 + \frac{x^2}{Q^2})$

- Asymptote en basses fréquences : $\omega \to 0$, $x \to 0$ et $\log x \to -\infty$, $G_{dB} = 20 \log |1 x^2| 10 \log((1 x^2)^2 + \frac{x^2}{O^2}) \simeq 20 \log 1 10 \log 1 = 0$: asymptote horizontale.
- Asymptote en hautes fréquences : $\omega \to \infty$, $x \to \infty$ et $\log x \to \infty$, $(1 x^2)^2 \simeq x^4 \gg \frac{x^2}{Q^2}$ d'où $G_{dB} = 20 \log |1 x^2| 10 \log((1 x^2)^2 + \frac{x^2}{Q^2}) \simeq 40 \log x 10 \log x^4 = 0$: asymptote horizontale.
- Asymptote centrale : Pour $x \to 1$ soit $\omega = \omega_0$, $|(1 x^2)^2| \to 0$, $G_{dB} = 20 \log |1 x^2| 10 \log((1 1^2)^2 + \frac{1^2}{O^2}) \to -\infty$: droite verticale.



Bande coupée on retrouve également $\Delta \omega = \omega_2 - \omega_1 = \frac{\omega_0}{Q}$: la largeur de la bande est donc inversement proportionnelle au facteur de qualité.

Réponse en phase

$$\varphi = \arg(\underline{H}(j\omega)) = \arg(\frac{1 - x^2}{1 - x^2 + j\frac{x}{Q}}) = \arg(1 - x^2) - \arg(1 - x^2 + j\frac{x}{Q})$$

et $arg(1 - x^2) = 0$ si x < 1 et $arg(1 - x^2) = \pi$ si x > 1

On remarque que $\varphi_{RB}=\varphi_{PB}$ si x<1 et $\varphi_{RB}=\pi+\varphi_{PB}$ si x>1, on déduit donc la courbe du réjecteur de bande de celle du passe bas en ajoutant simplement 0 si x<1 et π si x>1.

Diagramme asymptotique :

- Asymptote basses fréquences : Quand $x \to 0$, $\log x \to -\infty$ et $\varphi \to 0$: droite horizontale.
- Asymptote hautes fréquences : Quand $x \to \infty$, $\log x \to \infty$ et $\varphi \to 0$: droite horizontale.
- Si $x \to 1^-$, $\varphi \to 0 \arg(\frac{j}{Q}) = -\frac{\pi}{2}$
- Si $x \to 1^+$, $\varphi \to \pi \arg(\frac{j}{Q}) = \frac{\pi}{2}$

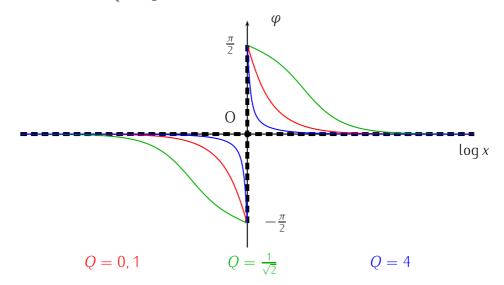


Table des matières

I Généralités sur les filtres

- 1. Quadripôles
- 2. Fonction de transfert en régime sinusoïdal forcé
- 3. Modélisation
- 4. Filtres électriques linéaires
 - 4.a. Rappels
 - 4.b. Principaux types de filtres linéaires
 - 4.c. Diagrammes de Bode

Il Exemples de filtres du premier ordre

- 1. Filtre passe bas du premier ordre : exemple du quadripôle RC.
- 2. Filtre passe haut du premier ordre.
 - 2.a. Montage et comportement asymptotique
 - 2.b. Fonction de transfert
 - 2.c. Fréquence de coupure :
 - 2.d. Diagrammes de Bode :
 - 2.e. Caractère dérivateur du filtre

III Exemples de filtres du deuxième ordre

- 1. Filtre passe bas d'ordre deux
- 2. Filtre passe haut d'ordre deux.
 - 2.a. Montage
 - 2.b. Comportement asymptotique
 - 2.c. Fonction de transfert
 - 2.d. Diagramme de Bode
- 3. Filtre passe bande d'ordre deux
- 4. Filtre coupe bande d'ordre deux
 - 4.a. Montage et comportement asymptotique
 - 4.b. Fonction de transfert
 - 4.c. Diagramme de Bode