
Lycée Victor Hugo MPSI 2025-2026 Option informatique

Chapitre 1. Introduction
Bases de la programmation en Caml

I Introduction

I.1 Qu’est ce que Caml ?
Caml est un langage de programmation développé par l’INRIA depuis 1985 ; il se range dans la

catégorie des langages fonctionnels, mais se prête aussi à la programmation impérative (et orientée
objet pour OCaml). Ces différents types de programmation sont présentés rapidement ci-dessous (cf.
figure 1), mais nous en reparlerons plus tard.

Il existe deux implémentations du langage : Caml Light est une version légère destinée jusqu’à
présent à l’enseignement et OCaml , qui est la version la plus récente et la plus complète ; elle est
destinée à un usage professionnel. Depuis l’année scolaire 2017-2018 c’est la version préconisée pour
les concours, et celle que nous utiliserons donc en cours, en TD et en TP.

La programmation impérative repose sur la notion de machine abstraite possédant une mémoire
et des instructions modifiant les états de celle-ci grâce à des affectations successives. Cela nécessite
pour le programmeur de connaître en permanence l’état de la mémoire que le programme modifie,
ce qui peut se révéler une tâche complexe.

La programmation fonctionnelle va mettre en avant la définition et l’évaluation de fonctions pour
résoudre un problème, en interdisant toute opération d’affectation. Dans ce mode de programmation,
la mémoire est donc gérée automatiquement et de manière transparente pour le programmeur.

La programmation orientée objet s’articule autour des données d’un programme. Ceux-ci sont
des objets constitués d’attributs les caractérisant et de méthodes les manipulant (ces dernières
pouvant être fonctionnelles ou impératives), l’ensemble des attributs et méthodes constituant une
classe.

Figure 1 – Les trois paradigmes principaux de la programmation .

Vous trouverez sur la page officielle du langage le manuel complet de OCaml :

http://ocaml.org/

I.2 Comment programmer en Caml ?
Se procurer Caml :

• En ligne, sur internet, vous pouvez vous rendre sur

https://try.ocamlpro.com/

qui présente un éditeur et une boucle interactive (Toplevel) en ligne .
• sous Mac OSX ou Windows

Vous pouvez essayer de télécharger MacCaml ou WinCaml 7.2 à l’adresse suivante :

https://jean-mouric.pagesperso-orange.fr/

Mais cette page est maintenant relativement en fouillis et confuse. Pas si facile de s’y retrouver.
Vous obtiendrez un environnement de développement intégré regroupant un éditeur de texte et un
interprète pour l’utilisation interactive de OCaml .

• sous Linux ou Mac OSX
Le mode Tuareg est un excellent éditeur de code OCaml pour Emacs. Vous pouvez-donc installer
emacs, puis le mode Tuareg.

1

Lycée Victor Hugo MPSI 2025-2026 Option informatique

Utilisation interactive : Caml est un langage compilé : on écrit les programmes à l’aide d’un
éditeur de textes, et le tout est traité par un compilateur pour créer un fichier exécutable.
Il existe cependant une boucle interactive (un peu comme l’interpréteur Python) qui permet d’interpréter
le langage : l’utilisateur tape des morceaux de programme qui sont traitées instantanément par le système,
lequel les compile, les exécute et écrit les résultats à la volée. C’est un mode privilégié pour l’apprentissage
du langage.
Lors d’une session interactive, le caractère # qui apparait à l’écran est le symbole d’invite du système
(le prompt). Le texte écrit par l’utilisateur commence après ce caractère et se termine par deux points-
virgules consécutifs, et constitue une phrase. Une fois lancé, l’interprète va afficher les types et valeurs
des expressions évaluées, avant de réafficher le prompt.

Commençons donc par observer une première session Caml :

1 > Objective Caml version 3.12.1
2 # let rec fact = function (* définition d’une fonction *)
3 | 0 -> 1
4 | n -> n * fact (n - 1) ;;
5 val fact : int -> int = <fun>
6 # fact 5;; (* application d’une fonction *)
7 - : int = 120
8 # fact 2.3;; (* une erreur de typage *)
9 Characters 5-8::

10 > fact 2.3 ;;
11 > ˆ ˆ ˆ
12 Error: This expression has type float, but an expression was expected of type

int
13 #

Code Caml 1

Dans ce premier exemple, nous avons commencé par définir une fonction fact à l’aide de l’instruction
d’affectation let ... = Cette définition est récursive, car la fonction s’appelle elle-même, comme
l’indique le mot-clé rec , et procède par filtrage (nous reviendrons à la fin de ce chapitre sur ces deux
notions), ce qui nous permet d’obtenir une définition très proche de la définition mathématique de la
fonction factorielle :

n! =

{
1 si n = 0
n× (n− 1)! sinon (1)

L’interprète nous répond (ligne 5) que nous avons défini un nouveau nom (fact), qui est de type int ->
int (-> se prononce « flèche »), et que ce nom a pour valeur une fonction (<fun>).

Nous pouvons observer que Caml est pourvu d’une reconnaissante automatique de type : cette fonction
ne peut s’appliquer qu’à des entiers, et retournera toujours un entier. Nous en avons l’illustration dans la
suite de l’exemple : à la commande suivante, l’interprète nous répond (ligne 7) que nous avons simplement
calculé une valeur sans la nommer (signalé par le caractère - , que cette valeur est de type int , et qu’elle
vaut 120. En revanche, appliquer cette fonction à un nombre non entier (ici de type float) conduit à un
message d’erreur. Caml est en effet un langage fortement typé : les erreurs de typage sont détectées
et les conversions implicites de type sont formellement interdites.

I.3 Définitions globales et locales
Attribuer un nom à une valeur à l’aide de l’instruction let est une définition. Les définitions sont des
liaisons de noms à des valeurs. Ces définitions ne sont pas modifiables, elles diffèrent donc fondamen-
talement du mécanisme d’affectation propre à la programmation de style impératif que nous étudierons
plus tard (et que nous avons déjà rencontré dans Python).
Une fois défini, un nouveau nom est utilisable dans d’autres calculs :

2

Lycée Victor Hugo MPSI 2025-2026 Option informatique

1 # let n = 10 + 2;;
2 val n : int = 12
3 # n * n;;
4 -: int = 144

Code Caml 2

La définition précédente est globale : la liaison qui a été établie entre le nom et sa valeur est permanente.

La syntaxe let ... = ... in permet de définir temporairement un nom pour la seule durée du calcul
en question. C’est une définition locale. On dit que la portée du nom est limité au contenu du in :

1 # let n = 5 in n * n;;
2 - : int = 25
3 # n * n;;
4 -: int = 144

Code Caml 3

On peut observer sur l’exemple précédent que même si elles portent le même nom, variables locale et
globale restent bien différenciées.
Notons enfin que le mot and permet des définitions multiples (en parallèle et simultanément) :

1 # let a = 3 and b = 2 in a + b ;;
2 - : int = 5

Code Caml 4

Attention, les valeurs ne deviennent visibles qu’après toutes les déclarations simultanées :

1 # let x = 1 and y = x + 1 ;;
2 Characters 18-19::
3 let x = 1 and y = x + 1 ;;
4 ˆ
5 Error: Unbound value

Code Caml 5

Une remarque très importante : let ... = ... in... est une expression et a donc un résultat,
ce qui n’est pas le cas de la liaison globale let ... = ...;;. Remarquer la différence de comportement
entre les deux phrases suivantes :

1 # let x = let a = 2 in a * a ;;
2 x : int = 4
3 # let a = 2 in let x = a * a ;;
4 Characters 26-28:
5 let a = 2 in let x = a * a;;
6 ˆ ˆ
7 Error: Syntax error

Code Caml 6

3

Lycée Victor Hugo MPSI 2025-2026 Option informatique

I.4 Fonctions
I.4.1 Fonction à un seul argument

Définir une fonction en Caml est simple et proche de la notation mathématique usuelle : on utilise
principalement la syntaxe let f arg = expr, où arg désigne l’argument de la fonction et expr le résultat
souhaité. Par exemple, pour définir la fonction f : x -> x + 1 on écrira :

1 # let f x = x + 1 ;;
2 val f : int -> int = <fun>
3 # f 2;;
4 - : int = 3

Code Caml 7

On peut noter que l’usage des parenthèses n’est ici pas nécessaire :

f x est équivalent à f(x).

En revanche, elles peuvent se révéler indispensables pour des expressions plus complexes :

1 #f 2 * 3 ;;
2 - : int = 9
3 # (f 2) * 3 ;;
4 - : int = 9
5 # f (2 * 3) ;;
6 - : int = 7

Code Caml 8

Cet exemple permet de mettre en évidence le fait que les expressions sont associées à gauche :

f x y est équivalent à (f x) y.

I.4.2 Fonctions à plusieurs arguments

Les fonctions possédant plusieurs arguments se définissent à l’aide de la syntaxe let f args = expr, où
cette fois-ci args désigne les différents arguments de la fonction, séparés par un espace. Par exemple, pour
définir l’application g : (x, y)− > x+ y on écrira :

1 # let g x y = x + y ;;
2 val g : int -> int -> int = <fun>
3 # g 2 3 ;;
4 - : int = 5

Code Caml 9

Une telle définition de fonction est dite curryfiée 1, car elle permet aisément de définir des applications
partielles.
On peut en effet remarquer que f(x) = g(1, x) et que l’on aurait donc pu définir la fonction f en écrivant :
let f x = g 1 x, ou encore let f x = (g 1) x suivant la règle de l’association à gauche. Le langage
Caml autorisant la simplification à droite, il nous est alors loisible de définir f de la façon suivante :

1 # let f = g 1;;
2 val f : int -> int = <fun>

Code Caml 10

1. du nom du mathématicien Haskell Curry

4

Lycée Victor Hugo MPSI 2025-2026 Option informatique

I.4.3 Fonctions anonymes

Une fonction est donc un objet typé, qui en tant que tel peut être calculé, passé en argument, retourné
en résultat. Pour ce faire, on peut construire une valeur fonctionnelle anonyme en suivant la syntaxe
function x -> expr. Par exemple, les fonctions f et g peuvent aussi être définies de la façon suivante :

1 # let f = function x -> x + 1 ;;
2 val f : int -> int = <fun>
3 # let g = function x -> function y -> x + y ;;
4 val g : int -> int -> int = <fun>

Code Caml 11

Cette dernière écriture a le mérite de mettre en évidence la raison pour laquelle f = g 1 (grâce à la
commutativité de l’addition) : g 1 est en effet équivalent à : function y -> 1 + y. On peut en outre
observer que le typage est associatif à droite :

int -> int -> int est équivalent à int -> (int -> int) .

Attention cependant : il n’est pas permis d’utiliser function avec deux variables ou plus (d’où l’écriture
un peu lourde de la dernière définition de la fonction g). On peut néanmoins utiliser l’instruction fun
pour alléger l’écriture d’une fonction anonyme à plusieurs variables, sachant que fun a b est un racourci
pour function a ->function b. On pouvait donc aussi écrire : let g = fun x y -> x + y.

II Les types en Caml
Nous l’avons déjà dit, toute valeur manipulée par Caml possède un type reconnu automatiquement par
le compilateur sans qu’il soit nécessaire de le déclarer : connaissant les types des valeurs de base et des
opérations primitives, le contrôleur de types produit un type pour une phrase en suivant des règles de
typage pour les constructions du langage (nous en avons eu un premier aperçu avec la définition des
fonctions).
Nous allons maintenant passer en revue les principaux types élémentaires ainsi que quelques opérations
primitives, avant de décrire les premières règles de construction des types composés.

II.1 Types élémentaires
II.1.1 Le vide

Le type unit est particulièrement simple, puisqu’il ne comporte qu’une seule valeur, notée (), et qu’on
appelle void.
Pour comprendre sa raison d’être, imaginons que l’on veuille afficher une chaîne de caractères à l’écran :
nous n’avons rien à calculer, seulement modifier l’environnement (c’est-à-dire réaliser ce qu’on appelle un
effet de bord). Or un langage fonctionnel ne peut que définir et appliquer des fonctions. Voilà pourquoi
la fonction print_string est de type string -> unit : elle renvoie le résultat void , tout en réalisant au
passage un effet de bord.

1 # print_string "Hello World" ;;
2 Hello World - : unit = ()

Code Caml 12

Autre exemple, la fonction print_newline est de type unit -> unit et a pour effet de passer à la ligne.
Pour l’utiliser, il ne faut donc pas oublier son argument (qui ne peut qu’être le void) :

1 # print_newline () ;;
2 - : unit = ()

Code Caml 13

5

Lycée Victor Hugo MPSI 2025-2026 Option informatique

II.1.2 Les entiers

Sur les ordinateurs équipés d’un processeur 64 bits, les éléments de type int sont les entiers de l’intervalle
[−262, 262 − 1], les calculs s’effectuant modulo 263 suivant la technique du complément à deux (voir cours
d’informatique de tronc commun). De même pour une machine 32 bits on peut manipuler les entiers
de l’intervalle [−230, 230 − 1] 2, modulo 231. Il faut donc veiller à ne pas dépasser ces limites sous peine
d’obtenir des résultats surprenants (l’exemple suivant correspond à une machine 64 bits, pour une machine
32 bits, utiliser a = 32768) :

1 # let a = 2147483648 in a * a ;;
2 - : int = -4611686018427387904
3 # let a = 2147483648 in a * a - 1;;
4 - : int = 4611686018427387903

Code Caml 14

Vous avez très certainement deviné que 231 = 2147483648.
Notez que max_int et min_int vous donnent les valeurs maximales et minimales de type entier :

1 # max_int ;;
2 - : int = 4611686018427387903
3 # min_int ;;
4 : int = -4611686018427387904

Code Caml 15

Les opérations usuelles se notent +, -, * (multiplication), / (quotient de la division euclidienne) et mod
(reste de la division euclidienne). Multiplication, quotient et reste ont priorité face à l’addition et la
soustraction, dans les autres cas la règle d’association à gauche s’applique, et on dispose des parenthèses
pour hiérarchiser les calculs si besoin est :

1 # 2 * 5 / 3 ;;
2 - : int = 3
3 # 5 / 3 * 2 ;;
4 - : int = 2
5 # 1 + 3 mod 2 ;;
6 - : int = 2
7 # (1 + 3) mod 2 ;;
8 - : int = 0

Code Caml 16

II.1.3 Les réels

Les éléments de type float sont des nombres décimaux (par exemple 3.141592653) éventuellement ac-
compagnés d’un exposant représentant une puissance de 10 (par exemple 1.789e3). Les calculs effectués
sur les flottants sont bien évidemment approchés.
Les opérateurs usuels se notent : +., -., *., /. (noter le point qui permet de les différencier des
opérateurs sur le type int), ** (élévation à une puissance). On dispose en outre d’un certain nombre de
fonctions mathématiques telles que : sqrt (racine carrée), log (qui désigne le logarithme népérien !),
exp, sin, cos, tan, asin (arcsinus), acos, atan ...

1 # let a = 3.141592654 in tan(a /. 4.) ;;
2 - : float = 1.00000000021

Code Caml 17

2. On peut se demander pourquoi on n’utilise que 31 des 32 bits. Ceci est dû à une optimisation de la gestion des entiers
qui réserve un bit à des fins personnelles...

6

Lycée Victor Hugo MPSI 2025-2026 Option informatique

Attention à ne pas oublier que Caml est un langage fortement typé : il n’y a pas de conversion implicite
de type, et vous ne pouvez donc pas appliquer une fonction du type float à une valeur de type int :

1 # let a = 3.141592654 in tan (a /. 4) ;;
2 Characters 32-33::
3 let a = 3.141592653 in tan (a /. 4) ;;
4 ˆ
5 Error: This expression has type int but an expression was expected of type

float

Code Caml 18

II.1.4 Caractères et chaînes de caractères

Les caractères sont les éléments du type char ; on les note en entourant le caractère par le symbole ’
(quote sous la touche 4). Les éléments de type string sont des chaînes de caractères entourées du symbole
" (double quote sous la touche 3). Nous reviendrons sur la notion de chaîne de caractères lorsque nous
aborderons les vecteurs ; pour l’instant, contentons nous de noter quelques fonctions qui pourront nous
être utiles :

• La concaténation des chaînes de caractères est notée par le symbole ˆ :

1 # "liberté, " ^ "égalité, " ^ "fraternité" ;;
2 - : string = " liberté , égalité , fraternité"

Code Caml 19

• La fonction prédéfinie String.length du module String renvoie la longueur d’une chaîne de
caractères ; c’est donc une fonction de type string -> int.

• La fonction String.get renvoie le n-ième caractère d’une chaîne de caractères (attention, dans
une chaîne les indices commencent à 0). C’est une fonction de type string -> int -> char.

• La fonction String.sub retourne une sous-chaîne partant d’un indice donné et d’une longueur
donnée ; c’est une fonction de type string -> int -> int -> string.

1 # String.get "Caml" 1 ;;
2 - : char = ‘a‘
3 # String.sub "informatique" 2 6 ;;
4 - : string = "format"

Code Caml 20

II.1.5 Les booléens

Le type bool comporte deux valeurs : le vrai (true) et le faux (false), et dispose des opérations logiques
non (not) et (&&) et ou (||). Les deux derniers opérateurs fonctionnent suivant le principe de l’évaluation
paresseuse : expr1 && expr2 ne va évaluer la deuxième expression que si la première est vraie, et expr1
|| expr2 ne va évaluer la deuxième expression que si la première est fausse.

1 # not (1 = 2) || (1 / 0 = 1) ;;
2 - : bool = true
3 # not (1 = 2) && (1 / 0 = 1) ;;
4 Exception: Division_by_zero

Code Caml 21

7

Lycée Victor Hugo MPSI 2025-2026 Option informatique

II.1.6 Les paires

Il est possible de définir le produit cartésien de deux types : si x est un élément de type ’a et y un élément
de ’b, alors (x, y) est un élément de type ’a * ’b.
Par exemple, la version non currifiée de la fonction g : (x, y) → x+ y se définit de la façon suivante :

1 # let g (x, y) = x + y ;;
2 val g : int * int -> int = < fun >

Code Caml 22

Il est bien entendu possible de faire le produit cartésien d’un nombre plus important de types, mais seuls
les paires disposent des fonctions fst et snd pour récupérer le première et la seconde composante du
couple :

1 # fst ("caml", 0.75) ;;
2 - : string = "caml"
3 # snd ("caml", 0.75) ;;
4 - : float = 0.75

Code Caml 23

II.2 Polymorphisme
On a pu constater que Caml est pourvu d’une reconnaissance automatique de type : par exemple, c’est
la présence de l’entier 1 et de l’opérateur entier + qui permet d’associer à la fonction function n -> n
+ 1 le type int -> int .
Mais il peut arriver qu’une fonction puisse s’appliquer indifféremment à tous les types ; on dit dans ce
cas que cette fonction est polymorphe. On utilise alors les symboles ’a, ’b, ’c ,... pour désigner des types
quelconques.
Revenons par exemple sur les fonctions fst et snd qui agissent sur les paires. Leur définition est évidente,
et n’imposent aucune contrainte de typage :

1 # let fst (x, y) = x ;;
2 val fst : ’a * ’b -> ’a = <fun>
3 # let snd (x, y) = y ;;
4 val snd : ’a * ’b -> ’b = <fun>

Code Caml 24

Nous avons vu que les opérations algébriques, l’addition par exemple, ne sont pas polymorphes : l’opéra-
teur infixe + est de type int -> int alors que +. est de type float -> float . En revanche, les opérations
de comparaison telle l’égalité = le sont. On peut utiliser le même opérateur pour comparer des entiers ou
des nombres complexes (ou tout autre objet pour lesquels la comparaison a un sens) :

1 # 1 = 1 ;;
2 - : bool = true
3 # 1.0 = 2.0 ;;
4 - : bool = false
5 # (=) ;; (* La version préfixe de l’égalité *)
6 - : ’a -> ’a -> bool = <fun>
7 # (=) 1 1 ;;
8 - : bool = true

Code Caml 25

Les autres opérateurs de comparaison polymorphes sont <> (la négation de l’égalité), <, >, <= (inférieur
ou égal), >= (supérieur ou égal).

8

Lycée Victor Hugo MPSI 2025-2026 Option informatique

1 # "anaconda" < "zebre" ;;
2 - : bool = true

Code Caml 26

(La comparaison des chaînes de caractères utilise l’ordre lexicographique.)

III Définition d’une fonction
Nous l’avons déjà dit, une fonction se définit à l’aide de la syntaxe let f = function ... -> ... et
son type est alors de la forme type1 -> type2 , le typage étant implicite, et polymorphe le cas échéant.
Cette syntaxe est en outre équivalente à let f ... = ...
Rappelons aussi que let f = fun x y -> ... est la forme raccourcie de :

let f = function x -> function y -> ...

et qu’on peut aussi écrire let f x y = ... Son type est alors type_de_x -> type_de_y ->
type_du_résultat .

III.1 Analyse par cas : le filtrage
Le filtrage est un trait extrêmement puissant de Caml , et à ce titre très fréquemment employé. La
syntaxe d’une fonction travaillant par filtrage peut prendre une des formes suivantes :

1 let f = function
2 | motif1 -> expr1
3 | motif2 -> expr2
4 |
5 | motifn -> exprn ;;

Code Caml 27

1 let f x = match x with
2 | motif1 -> expr1
3 | motif2 -> expr2
4 |
5 | motifn -> exprn ;;

Code Caml 28

Lors du calcul d’une telle fonction, l’interprète de commande va essayer de faire concorder l’argument
avec les motifs successifs qui apparaissent dans la définition. C’est l’expression correspondant au premier
motif reconnu qui sera calculée. Bien entendu, il est nécessaire que les différentes expressions du résultat
soient du même type.
Lorsque le motif est un nom, il s’accorde avec n’importe quelle valeur, et la reçoit dans l’expression
exécutée. Par exemple, la définition de la fonction sinus cardinal sera :

1 # let sinc = function
2 | 0. -> 1.
3 | x -> sin(x) /. x ;;
4 sinc : float -> float = <fun>

Code Caml 29

Lorsqu’il n’est pas nécessaire de nommer un motif, on utilise le caractère _ qui s’accorde avec n’importe
quelle valeur (tout comme un nom), à la différence près que cette valeur est perdue après filtrage :

9

Lycée Victor Hugo MPSI 2025-2026 Option informatique

1 # let est_nul x =
2 match x with
3 | 0 -> true
4 | _ -> false ;;
5 est_nul : int -> bool = <fun>

Code Caml 30

III.2 Motif gardé
Pour filtrer sur des cas que l’on ne peut exprimer structurellement, il est possible d’utiliser un motif gardé
dont la syntaxe est :

1 | motif when condition ->

Code Caml 31

Dans un tel cas de filtrage, le motif n’est reconnu que si la condition (une expression de type bool) est
vérifiée. Nous reparlerons et utiliserons cette possibilité plus tard.

III.3 Récursivité
Considérons de nouveau la définition de la fonction factorielle que nous avons donnée en introduction :

1 > Objective Caml version 3.12.1
2 # let rec fact = function (* définition d’une fonction *)
3 | 0 -> 1
4 | n -> n * fact (n - 1) ;;
5 val fact : int -> int = < fun >

Code Caml 32

ou encore en utilisant la structure match ... with , en notant l’utilisation de _

1 # let rec fact n =
2 match n with
3 | 0 -> 1
4 | _ -> n * fact (n - 1) ;;
5 val fact : int -> int = < fun >

Code Caml 33

Le mot clé rec indique que nous avons défini une fonction récursive, c’est-à-dire une fonction dont
le nom intervient dans sa définition. Nous approfondirons plus tard cette notion, contentons-nous pour
l’instant d’observer sa proximité avec nombre de définitions mathématiques, à commencer par les suites
récurrentes.
La suite de Fibonacci, par exemple, peut être définie ainsi :

1 #let rec fib n
2 match n with
3 | 0 -> 1
4 | 1 -> 1
5 | n -> fib (n - 1) + fib (n - 2) ;;

Code Caml 34

(Nous apprendrons plus tard que cette définition n’est pas très efficace, mais ce n’est pas la question pour
l’instant.)
Notons enfin qu’il est possible de définir deux fonctions mutuellement récursives à l’aide de la syntaxe
let rec f = ... and g = Les deux fonctions suivantes, par exemple, déterminent la parité d’un
entier naturel :

10

Lycée Victor Hugo MPSI 2025-2026 Option informatique

1 # let rec est_pair = function
2 | 0 -> true
3 | n -> est_impair (n -1)
4 and est_impair = function
5 | 0 -> false
6 | n -> est_pair (n - 1) ;;
7 est_pair : int -> bool = <fun>
8 est_impair : int -> bool = <fun>

Code Caml 35

11

