Limites de fonctions - continuité

Dans tout le chapitre, f désigne une fonction à valeurs dans \mathbb{R} , définie sur un ensemble D_f qui est un intervalle ou une union d'intervalles.

On considère un réel a tel que $a \in D_f$ ou bien a est "au bord" de D_f . Ainsi, a n'est pas forcément dans l'ensemble de définition de la fonction : par exemple si $D_f = \mathbb{R}^*$, a peut être égal à 0.

Limite d'une fonction

1) Notion de voisinage

a) Voisinage d'un point

Définition : voisinage d'un point

On dit qu'une propriété est vraie au voisinage d'un point a si il existe un intervalle ouvert contenant a tel que la propriété est vraie sur cet intervalle sauf éventuellement au

Exemple:

La fonction cos est positive au voisinage de 0:

Remarque:

Lorsque l'on parle de fonction, l'expression "au voisinage de" sous entend que l'on reste dans l'intervalle de définition de la fonction.

Ainsi, $x \mapsto \ln(x)$ est négative au voisinage de 0, bien qu'on ne puisse pas faire d'intervalle autour de 0 sur lequel ln est défini.

b) Voisinage de l'infini

Définition : voisinage de l'infini

On dit qu'une propriété est vraie au voisinage de $+\infty$ (resp. $-\infty$) si il existe un intervalle avec borne $+\infty$ (resp $-\infty$) tel que la propriété est vraie sur l'intervalle.

Exemple:

 $x \mapsto \ln x$ est positive au voisinage $+\infty$:

2) Limite finie

a) Limite en un point a

Définition : limite d'une fonction en un point

On dit que la fonction f admet une limite $\ell \in \mathbb{R}$ en un point a si et seulement si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D_f, \text{ si } |x - a| \leq \eta, \text{ alors } |f(x) - \ell| \leq \varepsilon$$

 $\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D_f, \text{ si } |x - a| \le \eta, \text{ alors } |f(x) - \ell| \le \varepsilon$ On note alors $\lim_{x \to a} f(x) = \ell$ ou $f(x) \xrightarrow[x \to a]{} \ell$

Interprétation:

Pour tout ε , on peut toujours s'approcher assez de a (c'est le " $\exists \eta$ tel que $|x-a| \leq \alpha$ ") pour garantir que f(x) est aussi proche que l'on veut de ℓ (i.e. $|f(x) - \ell| \le \varepsilon$).

Comme pour les suites, on a le résultat suivant :

Propriété 1 : Unicité de la limite

Soient ℓ et ℓ' dans \mathbb{R} . Si $\lim_{x \to a} f(x) = \ell$ et $\lim_{x \to a} f(x) = \ell'$, alors $\ell = \ell'$.

▷ Preuve : La même que pour les suites, à quelques adaptations près.

◁

Propriété 2 : Limite en un point où la fonction est définie

Supposons que $a \in D_f$, c'est à dire que f(a) existe. Si $\lim_{x\to a} f(x)$ existe, alors $\lim_{x\to a} f(x) = f(a)$

 $\triangleright Preuve$:

◁

Ce résultat est ce qui entrainera la définition de fonction continue, dans la seconde partie de ce chapitre....

b) Limite à l'infini

🛭 Définition : limite d'une fonction à l'infini

Soit f une fonction définie sur un intervalle ouvert vers $+\infty$. On dit que f admet une limite ℓ en $+\infty$ et on note $\lim_{x\to +\infty} f(x) = \ell$ si et seulement si

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}, \forall x \in D_f, \text{ si } x \geq M, \text{ alors } |f(x) - \ell| \leq \varepsilon$$

De même, on écrira $\lim_{x\to -\infty} f(x) = \ell$ si et seulement si

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}, \forall x \in D_f, \text{ si } x \leq M, \text{ alors } |f(x) - \ell| \leq \varepsilon$$

Remarques

- \triangleright C'est plus ou moins la même définition que les suites : M joue le rôle de n_0 et on a l'idée que "pour x assez grand", on est proche de la limite.
- lacktriangle Graphiquement, $\lim_{x\to +\infty} f(x)=\ell$ traduit la présence d'une asymptote horizontale, d'équation $y = \ell$

c) Précisions éventuelles

Comme pour les suites, on peut parfois, à partir d'une étude plus ou moins poussée, déterminer le signe de $f(x) - \ell$ lorsque l'on est proche de x_0 . On pourra alors noter :

- ▶ $\lim_{x \to x_0} f(x) = \ell^-$ si, au voisinage de $x_0, f(x) \le \ell$.
- ▶ $\lim_{x \to x_0} f(x) = \ell^+$ si, au voisinage de $x_0, f(x) \ge \ell$.

Exemples:

$$\blacktriangleright \lim_{x \to +\infty} 1 - \frac{1}{x} =$$

$$\blacktriangleright \lim_{x \to 0} |x| =$$

3) Limite à droite et limite à gauche

a) Definitions

M Définition:

 \blacktriangleright On dit que f admet une **limite à droite de** a si et seulement si il existe $\ell \in \mathbb{R}$ tel

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D_f, \text{ si } 0 < x - a \le \eta, \text{ alors } |f(x) - \ell| \le \varepsilon$$

On note alors
$$\lim_{x \to a^+} f(x) = \ell$$
, $f(x) \underset{x \to a^+}{\longrightarrow} \ell$, ou encore $\lim_{\substack{x \to a \\ x > a}} f(x) = \ell$ ou $f(x) \underset{\substack{x \to a \\ x > a}}{\longrightarrow} \ell$.

 \blacktriangleright On dit que f admet une limite à gauche de a si et seulement si il existe $\ell \in \mathbb{R}$ tel

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D_f, \text{ si } -\eta \leq x - a < 0, \text{ alors } |f(x) - \ell| \leq \varepsilon$$

On note alors
$$\lim_{x \to a^-} f(x) = \ell$$
, $f(x) \underset{x \to a^-}{\longrightarrow} \ell$, ou encore $\lim_{\substack{x \to a \\ x < a}} f(x) = \ell$ ou $f(x) \underset{\substack{x \to a \\ x < a}}{\longrightarrow} \ell$.

Remarque:

Contrairement à la limite "tout court", x ne vaut jamais ce point : notez bien que x < a ou x > a dans la définition!

La fonction partie entière

On définit sur \mathbb{R} la fonction partie entière, notée $x \mapsto \lfloor x \rfloor$, qui à tout nombre réel x associe le plus grand entier relatif qui le précède.

Remarque:

Certaines limites à gauche n'existent pas car la fonction n'est pas définie à gauche du point considéré. Par exemple $x \mapsto \sqrt{x}$ n'a pas de limite à gauche en 0. En fait, parler de limite à gauche dans ce cas n'a même pas de sens...

b) Lien avec les limites "tout court"

Dans le cas où les limites à gauche et à droite ont un sens, on a le résultat suivant :

Proposition 1:

Soit a tel que les limites à gauche et à droite de a ont un sens, alors

$$\lim_{x \to a} f(x) = \ell \Longrightarrow \lim_{x \to a^{-}} f(x) = \ell \text{ et } \lim_{x \to a^{+}} f(x) = \ell$$

▷ Preuve : On admet, mais intuitivement clair : la limite "tout court" prend déjà en compte les deux côtés...

La réciproque est fausse : soit par exemple

$$f: x \mapsto \left\{ \begin{array}{ll} 0 & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{array} \right.$$

Corolaire 1 :

Si $\lim_{x \to x_0^-} f(x) = \ell$ et $\lim_{x \to x_0^+} f(x) = \ell'$ avec $\ell \neq \ell'$, alors f n'admet pas de limite en x_0 .

Exemple: Partie entière

En pratique, on utilisera beaucoup le résultat suivant, conséquence des précédents :

Proposition 2:

Soit a tel que les limites d'une fonction f à gauche et à droite de a ont un sens.

ightharpoonup Si f n'est pas définie en a:

si
$$\lim_{x \to a^{-}} f(x) = \ell$$
 et $\lim_{x \to a^{+}} f(x) = \ell$ alors $\lim_{x \to x_{0}} f(x) = \ell$

ightharpoonup Si f est définie en a:

si
$$\lim_{x\to a^-} f(x) = \ell$$
 et $\lim_{x\to a^+} f(x) = \ell$ et si $\ell = f(a)$ alors $\lim_{x\to a} f(x) = \ell$

4) Limites infinies

a) En un point fini

Définition : limite infinie en un point

On dit que f admet pour limite $+\infty$ (resp. $-\infty$) en un point a si et seulement si :

$$\forall A \in \mathbb{R}, \exists \eta > 0, \forall x \in D_f, \text{ si } |x - a| \leq \eta \text{ alors } f(x) \geq A$$

$$(\text{resp.} \forall A \in \mathbb{R}, \exists \eta > 0, \forall x \in D_f, \text{ si } |x - a| \leq \eta \text{ alors } f(x) \leq A)$$
 On note alors $\lim_{x \to a} f(x) = +\infty$ ou $f(x) \underset{x \to a}{\longrightarrow} +\infty$.
$$(\text{resp. } \lim_{x \to a} f(x) = -\infty \text{ ou } f(x) \underset{x \to a}{\longrightarrow} -\infty).$$

On note alors
$$\lim_{x \to a} f(x) = +\infty$$
 ou $f(x) \xrightarrow[x \to a]{} +\infty$.
(resp. $\lim_{x \to a} f(x) = -\infty$ ou $f(x) \xrightarrow[x \to a]{} -\infty$).

Traduction:

Au voisinage de a, f(x) est plus grande (resp. plus petite) que n'importe quel nombre.

Remarque:

On définit de même les limites à droite et à gauche.

Exemple:

$$\blacktriangleright \lim_{x\to 0} \frac{1}{|x|} =$$

Interprétation graphique : asymptote verticale.

b) En un point infini

Définition : limite infinie à l'infini

$$\forall A > 0, \exists B \geq 0, \forall x \in D_f, \text{ si } x \geq B, \text{ alors } f(x) \geq A$$

On dit que f admet pour limite $+\infty$ en $+\infty$ si et seulement si : $\forall A>0, \exists B\geq 0, \forall x\in D_f, \text{ si } x\geq B, \text{ alors } f(x)\geq A$ Et on note $\lim_{x\to +\infty}f(x)=+\infty$ ou $f(x)\underset{x\to +\infty}{\longrightarrow}+\infty$.

Exemples:

Remarque:

On définit de la même façon le fait que f admette pour limite $-\infty$ en $+\infty$, et toujours dans le même esprit les limites prises en $-\infty$.

c) Interprétation graphique : asymptotes et branche parabolique

Définition: asymptote oblique

On dit qu'une droite est une asymptote oblique au graphe de f en $+\infty$ si et seulement si il existe a et b tels que $\lim_{x \to +\infty} f(x) - (ax + b) = 0$

Le graphe de f admet alors une droite asymptotique dont l'équation est y = ax + b.

Intuitivement : soit \mathcal{C}_f la courbe d'une fonction f. Une droite D est une asymptote à \mathcal{C}_f si la "distance" de la droite D à C_f tend vers 0 à l'infini $(+\infty, \text{ ou } -\infty)$.

Méthode:

DÉTERMINATION D'ASYMPTOTE OBLIQUE

On suppose que $\lim_{x \to +\infty} f(x) = +\infty$.

On calcule $\lim_{x \to +\infty} \frac{f(x)}{x}$

- ▶ Si cette limite vaut $a \in \mathbb{R}^*$, on calcule $\lim_{x \to +\infty} f(x) ax$
- Si cette dernière limite vaut $b \in \mathbb{R}$, alors y = ax + b est l'équation de l'asymptote oblique au graphe de f.

Définition: Branche parabolique

Si $\lim f = \pm \infty$ et que $\lim f(x) - ax - b = \pm \infty$ pour tout a et b réels, on parle de **branche** $\mathbf{parabolique}: \mathcal{C}_f$ "part" vers l'infini sans suivre une droite en particulier, mais avec une orientation qu'on peut parfois préciser.

Exemple : branche parabolique de direction un des axes

♂Méthode : DÉTERMINATION DE BRANCHES PARABOLIQUES VERTICALES OU HORIZONTALES

On suppose que $\lim_{x \to +\infty} f(x) = +\infty$.

On calcule lim

- ▶ Si cette limite est infinie : on a une branche parabolique de direction l'axe des
- ▶ Si cette limite est nulle : on a une branche parabolique de direction l'axe des abscisses.

Exemple : Soit f définie par $f(x) = \sqrt{x^2 + 4x - 5}$

II Théorèmes usuels sur les limites

Remarques préliminaires

- ► Ce sont plus ou moins les mêmes théorèmes que pour les suites, avec des preuves très proches, que nous ne détaillerons donc pas...
- ▶ On notera $a \in \overline{R}$ pour dire que $a \in \mathbb{R}$ ou a est $+\infty$ ou $-\infty$.

1) Opérations sur les limites

Les mêmes que pour les suites, avec les mêmes formes indéterminées : se reporter au chapitre sur les suites convergentes pour plus de détail.

2) Relation d'ordre et limites

a) Passage à la limite dans les inégalités

Soit $a \in \overline{R}$.

Soit f une fonction telle que $\lim_{x\to a} f(x) = \ell$ avec $\ell > 0$ ou $\ell = +\infty$.

Alors f est strictement positive au voisinage de a.

De même, si $\ell < 0$ ou $\ell = -\infty$, alors f est strictement négative au voisinage de a.

▷ Preuve : La même que pour les suites....

◁

Corolaire 2 : compatibilité avec la relation d'ordre

Soient f et g deux fonctions telles que au voisinage d'un $a \in \overline{\mathbb{R}}$ on a $f \leq g$. Alors si $\lim_{x \to a} f(x)$ et $\lim_{x \to a} g(x)$ existent on a

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

En particulier : si au voisinage de a, $\exists M \in \mathbb{R}, f(x) \geq M$ alors $\lim_{x \to a} f(x) \geq M$. (resp. si $f(x) \leq M$, alors $\lim_{x \to a} f(x) \leq M$.)

 \triangleright Preuve : On applique le théorème précédent à la fonction f-g et on raisonne par l'absurde (même démo que pour les suites).

b) Théorème des gendarmes ou théorème de l'encadrement

$\{\hat{\mathbb{Q}}_{\mathbb{Q}}\}$ Theorème 2:

Soient $a \in \mathbb{R}$, f, g et h trois fonctions définies au voisinage de a et telles que pour tout x de ce voisinage on ait

$$f(x) \le g(x) \le h(x)$$

Si f et h admettent une même limite $\ell \in \mathbb{R}$ en a, alors g admet une limite également et on a $\lim_a f = \lim_a g = \lim_a h = \ell$.

▷ Preuve : La même que pour les suites.

◁

Exemple:

$$\lim_{x \to 0} x \cos\left(\frac{1}{x}\right).$$

c) Limite par majoration ou minoration

$\mathbf{E}_{\mathbf{k}}^{\mathbf{k}}$ Theorème $\mathbf{3}:$

Soient $a \in \mathbb{R}$, f, g deux fonctions définies au voisinage de a et telles que pour tout x de ce voisinage on ait

$$f(x) \le g(x)$$

- si $\lim_{x \to a} f(x) = +\infty$, alors $\lim_{x \to a} g(x) = +\infty$. si $\lim_{x \to a} g(x) = -\infty$, alors $\lim_{x \to -\infty} f(x) = -\infty$.

Exemple:

Limite en $+\infty$ de $f(x) = x + \sin(x)$.

3) Composition et limites

a) Composée de deux fonctions

Theorème 4 : "composition de limite"

Soient f et g deux fonctions, $a \in \overline{\mathbb{R}}$, $b \in \overline{\mathbb{R}}$ et $c \in \overline{\mathbb{R}}$. On suppose que $\lim_{x\to a} f(x) = b$ et $\lim_{x\to b} g(x) = c$ alors

$$\lim_{x \to a} (g \circ f)(x) = c$$

ightharpoonup Preuve: Par exemple pour le cas $b=+\infty,\,a\in\mathbb{R}$ et $c\in\mathbb{R}$:

◁

 $\lim_{x \to \infty} e^{-x^2 + x + 1}$

b) Limite de fonction et suite

Soit f une fonction définie sur un domaine D_f et $a \in D_f$ ou au bord de D_f . Alors les deux phrases suivantes sont équivalentes :

- $1. \lim_{x \to a} f(x) = b$
- 2. pour toute suite (u_n) à valeur dans D_f telle que $\lim u_n = a$, on a $\lim f(u_n) = b$

 \triangleright Preuve :

Exemple: $\lim_{n\to+\infty} n \sin(\frac{1}{n})$.

∰ Corolaire 3 :

Soit f une fonction définie au voisinage d'un point $a \in \mathbb{R}$ et soient (u_n) et (v_n) deux suites à valeur dans l'ensemble de définition de f et telles que $\lim_{n\to +\infty}u_n=a$ et $\lim_{n\to +\infty}v_n=a$. Si $\lim f(u_n) = \ell$ et $\lim f(v_n) = \ell'$ avec $\ell \neq \ell'$, alors la fonction n'a pas de limite en x_0 .

$\triangleright Preuve$:

C'est la contraposée du sens direct du théorème précédent.

◁

Exemple:

▶ La fonction cos n'admet pas de limite en $+\infty$:

Théorème de la limite monotone :

C'est l'analogue du théorème déjà connu pour les suites :

Theorème 6 : théorème de la limite monotone

Soit f une fonction croissante sur un intervalle I =]a, b[avec a < b, a et b réels ou infinis. Alors:

(i) $\lim_{x \to a} f(x)$ existe.

Elle est finie si et seulement si f est majorée et on a alors $\lim_{x\to b^-} f(x) = \sup_{I} f$

(ii) $\lim_{x \to a^+} f(x)$ existe.

Elle est finie si et seulement si f est minorée et on a alors $\lim_{x\to a^+} f(x) = \inf_I f$.

⊳ Preuve : Même idée que les suites... cf le chapitre concerné.

∰ Corolaire 4 :

Tout fonction monotone sur un intervalle [a, b] admet des limites (éventuellement infinies) en a^+ et en b^- .

 \triangleright Preuve : si f est croissante c'est le théorème. Si f est décroissante alors -f et croissante. On applique le théorème à -f avant de revenir à f.

Il s'agit bien de limites à droite ou à gauche, il est possible que la limite tout court n'existe pas!

Méthodes élémentaires de calculs de limites

1) Limite en un point

a) Cas des fractions rationnelles

Forme 0/0 dans une fraction rationnelle

Si la limite en un point $a \in \mathbb{R}$ donne une forme 0/0, il suffit de factoriser le numerateur et dénominateur par (x-a) et de simplifier jusqu'à lever l'indétermination.

En effet, si la forme obtenue donne $\frac{0}{0}$, c'est que a est racine du polynôme au numérateur et aussi de celui du dénominateur. Donc (x-a) divise l'un et l'autre. Cette méthode marche TOUT LE TEMPS.

Exemple:

1.
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1}$$
.

2.
$$\lim_{x \to -2^+} \frac{2x^2 + 3x - 2}{x^2 + 4x + 4}$$

b) Limites associées à des dérivées

Rappel:

si f est dérivable en un point a, alors

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Proposition 3: Limites usuelles en 0

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$$

c) Changement de variable:

Méthode:

Comment se ramener à une limite en 0

Si le calcul de limite est en un point autre que 0 et que l'on veut se ramener en 0, on effectue un changement de variable :

- ▶ Si la limite est en $a \in \mathbb{R}$, on pose h = x a. Alors $\lim_{x \to a} f(x) = \lim_{h \to 0} f(a+h)$.
- ▶ si la limite est en $+\infty$, on pose $h = \frac{1}{x}$. Alors $\lim_{x \to +\infty} f(x) = \lim_{h \to 0^+} f\left(\frac{1}{h}\right)$.
- ▶ si la limite est en $-\infty$, on pose $h = \frac{1}{x}$ et alors $\lim_{x \to +\infty} f(x) = \lim_{h \to 0^-} f\left(\frac{1}{h}\right)$.

Exemples:

$$\blacktriangleright \lim_{x \to 2} \frac{\sin(2-x)}{x-2}$$

$$\blacktriangleright \lim_{x \to +\infty} x \ln(1 + \frac{1}{x})$$

Limites en $+\infty$ ou en $-\infty$:

Technique élémentaire : Repérerer les termes "les plus forts" et factoriser par ceux-ci

Proposition 4 : Croissances comparées

Soient $\alpha > 0$ et $\beta > 0$ deux réels.

$$1. \lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0$$

3.
$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{e^{\alpha x}} = 0$$

1.
$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0$$
2.
$$\lim_{x \to +\infty} \frac{x^{\alpha}}{e^{\beta x}} = 0 \text{ et } \lim_{x \to -\infty} |x|^{\alpha} e^{\beta x} = 0$$
3.
$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{e^{\alpha x}} = 0$$
4.
$$\lim_{x \to 0} x^{\alpha} |\ln x|^{\beta} = 0$$

4.
$$\lim_{n \to 0} x^{\alpha} |\ln x|^{\beta} = 0$$

Les limites ci dessus, et seulement celles-ci, sont appelées "croissances comparées"

Exemple:
$$1. \lim_{x \to +\infty} e^x - x^3 =$$

$$2. \lim_{x \to +\infty} \frac{x^4 + 3x + 2}{x^2 + 1 + \ln x} =$$

Fonctions continues

1) Définitions

a) Continuité en un point

Définition : continuité

- ▶ Soit I un intervalle et $a \in D_f$. Soit f une fonction définie sur I (et donc en a). On dit que f est **continue en** a si et seulement si $\lim_{x\to a} f(x)$ existe et est finie. On a alors $\lim_{x\to a} f(x) = f(a)$.
- ▶ On dit que f est continue sur D si et seulement si $\forall a \in D$, f est continue en a.

Remarque:

Le fait que $\lim_{x \to a} f(x) = f(a)$ est une conséquence de la définition : c'est l'existence de cette limite qui fait qu'elle vaut f(a)... Il n'y a en quelque sorte "pas le choix".

NOTATION (

On note $\mathcal{C}(D,\mathbb{R})$ (ou simplement $\mathcal{C}(D)$) l'ensemble des fonctions continues sur D à valeur

Exemples:

► Les fonctions polynômiales sont continues :

- \blacktriangleright On a déjà montré que cos et sin sont dans $\mathcal{C}(\mathbb{R})$.
- ▶ En fait, la plupart des fonctions usuelles sont continues sur leur ensemble de définition...

b) Continuité à droite ou à gauche

Définition : continuité à droite ou à gauche

On dit que f est **continue à droite** (resp. à gauche) en a si et seulement si $\lim_{\substack{x \to a \\ x > a}} f(x) = f(a)$

Remarque:

Cette fois, il faut inclure dans la définition que la limite est bien f(a): la limite à droite exclut a et le raisonnement effectuée pour la continuité "tout court" n'est plus possible.

Exemple:

Soit $f: x \mapsto \lfloor x \rfloor$ on a vu que si $a \in \mathbb{Z}$, $\lim_{\substack{x \to a \\ x > a}} \lfloor x \rfloor = \lfloor a \rfloor = f(a)$: on a donc f continue à droite.

En revanche, $\lim_{\substack{x \to a \\ x < a}} \lfloor x \rfloor = \lfloor a \rfloor - 1 \neq f(a)$, donc f n'est pas continue à gauche.

${\mathfrak Proposition} 5:$

Soit $a \in D_f$ tel que a n'est pas une extrémité de I alors f est continue en a ssi f est continue à droite et à gauche

 $\triangleright Preuve$:

◁

Exemple:

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} x^2 & \text{si } x \ge 0\\ \sin x & \text{si } x < 0 \end{cases}$$

c) Prolongement par continuité

Définition : Prolongement par continuité

Soit f une fonction définie sur un ensemble D_f et soit $a \notin D_f$ mais tel que f admet en aune limite finie ℓ .

On dit qu'on **prolonge** f par continuité en posant pour valeur de f en ce point a la

$$D_f \cup \{a\} \to \mathbb{R}$$

$$x \mapsto \begin{cases} f(x) & \text{si } x \in D_f \\ \ell & \text{si } x = a \end{cases}$$

La fonction ainsi définie est continue en a, et on la note habituellement de la même façon

Exemples:

▶ Soit $f: \mathbb{R}^* \to \mathbb{R}$ définie par $f(x) = \frac{\sin x}{x}$.

► Soit
$$f(x) = \frac{x^2 + x - 2}{x^2 - 1}$$
.

Remarque:

Par unicité de la limite, un prolongement par continuité ne se fait que d'une seule façon, justifiant encore une fois qu'on identifie f et son prolongement...

2) Théorème généraux

- a) Opérations usuelles :
 - Proposition 6:

Soit f et g deux fonctions continues sur D et $\lambda, \mu \in \mathbb{R}$, alors

- 1. $\lambda f + \mu g$ est continue sur D2. fg est continue sur D3. $\frac{f}{g}$ est continue en tout point de D où g ne s'annule pas
- ▷ Preuve : Immediat par propriété calculatoire sur les limites.

Exemple:

Les fractions rationnelles sont continues, en tant que quotient de fonctions continues, tout comme la fonction tan.

◁

◁

- b) Composition
 - Proposition 7:

Soif $f: D \to G$ continue sur D et $g: H \to I$ continue sur H avec $G \subset H$, alors

 $g \circ f: D \to I$ est continue sur D

▷ Preuve : C'est la composition de limite...

Exemple:

Soit f définie par $f(x) = \ln(x^2 - 3x + 2)$.

Les grands théorèmes autour de la continuité

1) Théorème des valeurs intermédiaires

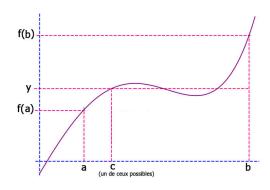
a) Enoncé:

Theorème 7 : théorème des valeurs intermédiaires

Soient $a, b \in \mathbb{R}$ avec a < b et f une fonction continue sur [a, b]. Pour tout réel y entre f(a) et f(b), il existe (au moins un) c dans l'intervalle [a,b] tel que f(c) = y

▷ Preuve : Voir TD!

◁



b) Recherche de zéros de fonctions par dichotomie

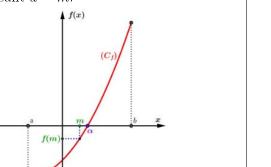
Soit f continue sur un intervalle [a, b]. On cherche α tel que $f(\alpha) = 0$ (on dit alors que α est un zero de f)

Si f(a) = 0 ou f(b) = 0: le problème est résolu.

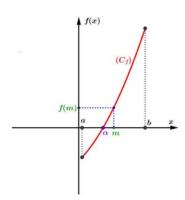
Si par exemple f(a) < 0 et f(b) > 0, alors comme 0 est compris entre f(a) et f(b), par le théorème des valeurs intermédiaires il existe $c \in [a, b]$ tel que f(c) = 0: le problème a donc au moins une solution.

Posons $m = \frac{a+b}{2}$. On calcule f(m) et on a trois situations :

ightharpoonup Si f(m) < 0, alors f s'annule dans [m, b]. On recommence à l'étape précédente en posant a = m.



ightharpoonup Si f(m) > 0, alors f s'annule dans [a, m]et on recommence en posant b=m



 \blacktriangleright Si f(m)=0, alors on s'arrête... En pratique, ce cas ne se produit que rarement, car on utilise l'algorithme de dichotomie dans des cas où le zero est difficile à trouver....

A chaque étape, la taille de l'intervalle est divisée par 2, ce qui fait qu'en n étapes, on trouve un zero de f à $\frac{b-a}{2^n}$ près : c'est une estimation très précise et rapide!

c) Exemple d'étude de suites définies implicitement :

Exercice 1

Soit f la fonction définie sur \mathbb{R}^{*+} par $f(x) = x + \ln(x)$.

- 1. Montrer que pour tout n de \mathbb{N}^* , l'équation f(x) = n admet une solution unique dans [1, n] qu'on notera x_n .
- 2. Étudier la monotonie de $(x_n)_{n\geq 1}$ puis sa limite.
- 3. Montrez que pour tout $n \ge 1$, on a : $f(n \ln(n)) \le n$. En déduire que $n \ln(n) \le x_n$.
- 4. Déterminer $\lim \frac{x_n}{n}$.

Image d'un intervalle par une fonction continue

Theorème 8 : image d'un intervalle

Soit I un intervalle et f une fonction continue sur I. Alors f(I) est un intervalle.

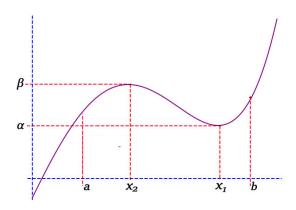
 $\triangleright Preuve$:

◁

Theorème 9 :

Soit I = [a, b] un intervalle fermé $(a, b \in \mathbb{R})$, alors f(I) est un intervalle de la forme $[\alpha, \beta]$ avec $\alpha = \min_{I} f$ et $\beta = \max_{I} f$

On dit que f est bornée et atteint ses bornes : il existe $x_1 \in [a,b]$ tel que $f(x_1) = \min f$ et $x_2 \in [a, b]$ tel que $f(x_2) = \max f$.



⊳ Preuve : On admet. Il s'agit de fonctionner via des suites bien choisies, mais c'est assez technique...

🛕 Danger!

IMPORTANCE DE LA FERMETURE DE L'INTERVALLE

Le fait que l'intervalle soit fermé est essentiel. On a des contre-exemples faciles pour les cas non fermés:

- Soit $f: x \mapsto \frac{1}{x}$. La fonction f est continue sur]0,1], mais l'image de]0,1] est $[1, +\infty[$: elle n'est pas bornée.
- ▶ Soit $f: x \mapsto x^2$. La fonction f est continue sur]-1,1[et l'image de]-1,1[est [0, 1]. Ainsi, la fonction est effectivement bornée, mais la borne 1 n'est pas atteinte sur] - 1; 1[.

Exemple d'utilisation:

Soit $f(x) = x^2 - 3x + 2$. On veut déterminer l'image de l'intervalle [-1, 1].

3) Continuité et bijections :

Theorème 10 : théorème de la bijection continue

Soit I un **intervalle** et soit f une fonction telle que :

- (H1): f est continue sur I.
- (H2) : f est strictement monotone sur I.

- 1. f(I) est un intervalle.
- 2. f est une bijection de I sur f(I).
- 3. l'application réciproque f^{-1} est de même monotonie que f.
- 4. l'application réciproque f^{-1} est continue également.
- ▷ Preuve : On a déjà tout démontré : il reste juste la continuité mais on l'admet.

Exemples:

- La fonction $x \mapsto \frac{1}{x}$ est continue, comme quotient de fonction continue. Donc $x \mapsto \ln(x)$ est continue, en tant que primitive.
 - Et donc exp est continue, en tant que fonction réciproque d'une fonction continue.
- ▶ De même, les racines n-nième et les fonctions trigonométriques réciproques sont des fonctions continues!