Exercices

Exercice 1. Étudier la nature des intégrales suivantes :

$$1. \int_{1}^{+\infty} \frac{\sin^2 x}{x^2} \, \mathrm{d}x;$$

$$6. \int_{2}^{+\infty} \frac{1}{x \ln x} \, \mathrm{d}x;$$

2.
$$\int_{1}^{+\infty} \frac{\sqrt{x+2} - \sqrt{x+1}}{x} dx$$
;

7.
$$\int_0^1 \frac{\ln(1+x)}{x} \, \mathrm{d}x$$
;

3.
$$\int_{1}^{+\infty} \frac{x \ln x}{x^2 + x + 1} dx$$
;

$$8. \int_0^1 \frac{\ln x}{\sqrt{x}} \, \mathrm{d}x;$$

4.
$$\int_{1}^{+\infty} \frac{\ln x}{x^2 + 1} \, \mathrm{d}x$$
;

9.
$$\int_0^1 \sin\left(\frac{1}{x}\right) \, \mathrm{d}x;$$

5.
$$\int_0^{+\infty} \sqrt{x^2 + 1} e^{-x} dx$$
;

$$10. \int_0^1 \frac{\sin x}{\sqrt{1-x}} \, \mathrm{d}x.$$

Exercice 2. Montrer la convergence et calculer les intégrales suivantes :

1.
$$\int_{1}^{+\infty} \frac{1}{x(x+1)} \, \mathrm{d}x$$
;

$$2. \int_0^{+\infty} \frac{1}{\sqrt{t} \times (1+t)} \, \mathrm{d}t;$$

3.
$$\int_0^{+\infty} \frac{1}{\operatorname{ch} x} \, \mathrm{d}x.$$

Exercice 3. On considère la fonction

$$f : \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_0^{+\infty} \frac{\ln(t)}{x^2 + t^2} dt.$$

- 1. Montrer que f est bien définie.
- 2. Calculer f(1) (on pourra utiliser le changement de variable $u=\frac{1}{t}$).
- 3. En déduire la valeur de f(x) pour tout x > 0.

Exercice 4.

- 1. Montrer que pour $X \ge 1$, $\int_1^X \frac{\sin x}{x} dx = \cos 1 \frac{\cos X}{X} \int_1^X \frac{\cos x}{x^2} dx$.
- 2. Montrer l'intégrale

$$\int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x.$$

est convergente.

3. Montrer que pour tout $k \in \mathbb{N}^*$,

$$\int_{2k\pi}^{2(k+1)\pi} \frac{\sin^2(x)}{x} \geqslant \frac{1}{2(k+1)}.$$

4. Montrer l'intégrale

$$\int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x.$$

n'est pas absolument convergente.

5. La fonction $x \mapsto \frac{\sin x}{\sqrt{x}}$ est-elle intégrable sur $]0; +\infty[$? L'intégrale $\int_0^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ est-elle convergente?

Exercice 5. Soit f une fonction rationnelle. Sur quels intervalles f est-elle intégrable?

Exercice 6.

- 1. Pour quelles valeurs du réel α la fonction $f:t\mapsto t^\alpha e^{-\sqrt{t}}$ est-elle intégrable sur $]0\,;+\infty[\,?$
- 2. Calcular $\int_0^{+\infty} t^2 e^{-\sqrt{t}} dt$.

Exercice 7.

- 1. Montrer que $f: x \mapsto \ln(\sin x)$ est intégrable sur $]0; \pi[$.
- 2. Montrer que :

$$\int_0^{\pi} \ln(\sin t) dt = 2 \int_0^{\frac{\pi}{2}} \ln(\sin t) dt = 2 \int_0^{\frac{\pi}{2}} \ln(\cos t) dt.$$

3. En déduire la valeur de :

$$\int_0^{\pi} \ln(\sin t) \, \mathrm{d}t.$$

Exercice 8.

- 1. Pour quelles valeur du couple $(m,n)\in\mathbb{N}^2$ la fonction $t\mapsto t^m(\ln t)^n$ est-elle intégrable sur]0;1[?
 - Dans ce cas, calculer:

$$I_{m,n} = \int_0^1 t^m (\ln t)^n \, \mathrm{d}t.$$

2. Déterminer un équivalent de $I_{n,n}$ lorsque n tend vers l'infini.

Exercice 9.

1. Montrer que :

$$\int_{n}^{+\infty} \frac{e^{-t}}{t} \, \mathrm{d}t \underset{n \to +\infty}{\sim} \frac{e^{-n}}{n}.$$

2. Déterminer un équivalent lorsque n tend vers $+\infty$ de :

$$\int_0^{+\infty} \frac{e^{-t}}{t+n} \, \mathrm{d}t$$

Exercice 10. Déterminer un équivalent simple de

$$\int_{1}^{x} \frac{1}{\sqrt{t + \sqrt{t}}} \, \mathrm{d}t$$

lorsque x tend vers $+\infty$.

Exercices CCINP

Exercice 11 (CCINP 28).

 $N.B.: les\ deux\ questions\ sont\ indépendantes.$

- 1. La fonction $x\mapsto \frac{e^{-x}}{\sqrt{x^2-4}}$ est-elle intégrable sur]2; $+\infty$ [?
- 2. Soit a un réel strictement positif. La fonction $x\mapsto \frac{\ln x}{\sqrt{1+x^{2}a}}$ est-elle intégrable sur $]0\,;+\infty[\,?$