L'énoncé de cette épreuve comporte 3 pages de texte.

Approximation par des exponentielles-polynômes

L'objectif du problème est d'établir, par des méthodes euclidiennes, des théorèmes d'approximation par des polynômes ou des exponentielles-polynômes de certaines fonctions définies sur $[0, +\infty[$ ou sur \mathbb{R} .

Les parties I et II sont indépendantes. La partie III utilise les résultats des parties I et II.

Étant donné un intervalle I de \mathbb{R} , on appelle fonction polynomiale sur I toute fonction de la forme $f: I \to \mathbb{R}, \ x \mapsto \sum_{k=0}^{n} \lambda_k x^k$, où n est un entier naturel et $\lambda_0, \ldots, \lambda_n$ des nombres réels.

I. Résultats préliminaires

I.1. ÉTUDE D'UNE SÉRIE ENTIÈRE

Pour tout réel x strictement positif, on pose

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1. Montrer que la fonction Γ est bien définie, et à valeurs strictement positives.
- 2. À l'aide d'une intégration par parties que l'on justifiera avec soin, montrer que $\Gamma(x+1) = x\Gamma(x)$ pour tout x > 0.

Soit α un réel strictement supérieur à -1. Pour tout $n \in \mathbb{N}$, on pose $a_n = \frac{\Gamma(n+\alpha+1)}{n!}$.

- 3. Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$.
- 4. Montrer que

$$\sum_{n=0}^{\infty} a_n x^n = \frac{\Gamma(\alpha+1)}{(1-x)^{\alpha+1}} \text{ pour tout } x \in]-R, R[.$$

On pourra effectuer une permutation des symboles $\sum_{n=0}^{\infty}$ et $\int_{0}^{+\infty}$, que l'on justifiera soigneusement.

I.2. Projections orthogonales

Dans cette partie, E désigne un \mathbb{R} -espace vectoriel, pas nécessairement de dimension finie, muni d'un produit scalaire <.,.>. On note $\|.\|$ la norme associée à ce produit scalaire, définie par $\|x\| = < x, x >^{1/2}$ pour tout $x \in E$.

Soit F un sous-espace vectoriel différent de $\{0\}$ et de dimension finie de E.

5. Donner la définition de la projection orthogonale π_F sur F.

On fixe (e_1, \ldots, e_n) une base orthonormale de F, et x un vecteur de E.

- 6. Démontrer que $\pi_F(x) = \sum_{i=1}^n \langle x, e_i \rangle e_i$.
- 7. Montrer enfin que

$$||x - \pi_F(x)||^2 = ||x||^2 - \sum_{i=1}^n \langle x, e_i \rangle^2.$$

II. Polynômes de Laguerre

Dans toute cette partie, on fixe un réel $\alpha > -1$, et on note E_{α} l'ensemble des fonctions continues $f: [0, +\infty[\to \mathbb{R} \text{ telles que l'intégrale } \int_0^{+\infty} x^{\alpha} e^{-x} f(x)^2 dx \text{ est convergente.}$

- 8. Montrer que, pour tout $(a,b) \in \mathbb{R}^2$, $|ab| \leq \frac{a^2 + b^2}{2}$.
- 9. En déduire que, si f et g sont deux éléments de E_{α} , l'intégrale $\int_{0}^{+\infty} x^{\alpha} e^{-x} f(x) g(x) dx$ est convergente.
- 10. En déduire que E_{α} est un sous-espace vectoriel de l'espace vectoriel $\mathscr{C}([0, +\infty[, \mathbb{R})$ des fonctions continues de $[0, +\infty[$ vers \mathbb{R} .
- 11. Montrer que toute fonction polynomiale sur $[0, +\infty]$ est élément de E_{α} .

Pour tout entier naturel n, on définit les fonctions :

$$\varphi_n:]0, +\infty[\to \mathbb{R}, \ x \mapsto x^{n+\alpha}e^{-x}]$$

et

$$\psi_n:]0, +\infty[\to \mathbb{R}, \ x \mapsto x^{-\alpha} e^x \varphi_n^{(n)}(x)]$$

où la notation $\varphi_n^{(n)}$ désigne la dérivée d'ordre n de φ_n (avec la convention $\varphi_0^{(0)} = \varphi_0$).

- 12. Calculer ψ_0 , ψ_1 et ψ_2 .
- 13. Pour tout $n \in \mathbb{N}$, montrer que la fonction ψ_n est polynomiale. Préciser son degré et son coefficient dominant.

Dans la suite, on identifie ψ_n à son unique prolongement continu à $[0, +\infty[$, qui est une fonction polynomiale sur $[0, +\infty[$. Cela permet de considérer ψ_n comme un élement de E_{α} , ce qu'on fera désormais.

Pour tout $(f,g) \in E_{\alpha}^2$, on pose :

$$\langle f, g \rangle = \int_0^{+\infty} x^{\alpha} e^{-x} f(x) g(x) dx.$$

14. Montrer que $\langle .,. \rangle$ est un produit scalaire sur E_{α} .

Dans la suite, on note $\|.\|_{\alpha}$ la norme associée à ce produit scalaire, définie par

$$||f||_{\alpha} = \left(\int_0^{+\infty} x^{\alpha} e^{-x} f(x)^2 dx\right)^{1/2}$$
 pour tout $f \in E_{\alpha}$.

15. Soit n un entier ≥ 1 . Pour tout entier $k \in [0, n-1]$, établir que

 $\varphi_n^{(k)}(x) \to 0$ quand x tend vers 0 par valeurs strictement positives,

et que

$$\varphi_n^{(k)}(x) = o(e^{-x/2}) \text{ quand } x \to +\infty.$$

16. Soit m et n deux entiers naturels. Montrer que

$$\langle \psi_m, \psi_n \rangle = (-1)^n \int_0^{+\infty} \psi_m^{(n)}(x) \varphi_n(x) dx.$$

En déduire que la famille $(\psi_n)_{n\in\mathbb{N}}$ est orthogonale pour le produit scalaire $\langle .,. \rangle$.

17. Montrer que, pour tout $n \in \mathbb{N}$, $\|\psi_n\|_{\alpha}^2 = n!\Gamma(n+\alpha+1)$ (la fonction Γ a été définie dans la partie I.).

III. Approximation

On conserve les hypothèses et notations de la partie II. Pour tout entier naturel k, on définit la fonction

$$f_k: [0, +\infty[\to \mathbb{R}, x \mapsto e^{-kx},$$

qui est élément de E_{α} (on ne demande pas de le vérifier).

Pour tout $N \in \mathbb{N}$, on note V_N le sous-espace vectoriel de E_{α} engendré par la famille finie $(\psi_n)_{0 \le n \le N}$, et on note π_N la projection orthogonale de E_{α} sur V_N .

- 18. Soit $k \in \mathbb{N}$. Montrer la convergence de la série $\sum_{n \geqslant 0} \frac{\langle f_k, \psi_n \rangle^2}{\|\psi_n\|_{\alpha}^2}$ et calculer sa somme.
- 19. En déduire que, pour tout $k \in \mathbb{N}$, $||f_k \pi_N(f_k)||_{\alpha} \to 0$ quand $N \to +\infty$.

Dans toute la suite, on note \mathscr{P} le sous-espace vectoriel de E_{α} constitué des fonctions polynomiales.

20. Montrer que, pour tout $k \in \mathbb{N}$ et tout $\varepsilon > 0$, il existe $p \in \mathscr{P}$ telle que $||f_k - p||_{\alpha} \leqslant \varepsilon$.

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction continue tendant vers 0 en $+\infty$. Il est facile de vérifier (ce n'est pas demandé) que $f\in E_{\alpha}$.

21. Montrer que, pour tout $\varepsilon > 0$, il existe un entier naturel n ainsi que des réels $\lambda_0, \ldots, \lambda_n$ tels que

$$\left\| f - \sum_{k=0}^{n} \lambda_k f_k \right\|_{\alpha} \le \varepsilon.$$

On pourra utiliser la fonction

$$g:[0,1] \to \mathbb{R}, \ t \mapsto \begin{cases} f(-\ln t) & \text{si } t \in]0,1] \\ 0 & \text{si } t = 0 \end{cases}$$

et le résultat **admis** suivant : si $\phi : [0,1] \to \mathbb{R}$ est une fonction continue, alors, pour tout $\varepsilon > 0$, il existe une fonction polynomiale $p : [0,1] \to \mathbb{R}$ telle que $|\phi(t) - p(t)| \le \varepsilon$ pour tout $t \in [0,1]$.

3

22. Montrer que, pour tout $\varepsilon > 0$, il existe $p \in \mathscr{P}$ telle que $||f - p||_{\alpha} \le \varepsilon$.

23. Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction continue, paire et nulle en dehors d'un segment [-A, A] (A > 0). Montrer que, pour tout $\varepsilon > 0$, il existe une fonction polynomiale $p: \mathbb{R} \to \mathbb{R}$ telle que

$$\int_{-\infty}^{+\infty} \left(h(x) - p(x)e^{-\frac{x^2}{2}} \right)^2 dx \leqslant \varepsilon.$$

On pourra appliquer le résultat de la question 22 à la fonction $f:[0,+\infty[\to\mathbb{R},\ x\mapsto h(\sqrt{x})e^{\frac{x}{2}}$ et à un α bien choisi.

On peut montrer que le résultat de la question 23 est en réalité valable pour toute fonction $h: \mathbb{R} \to \mathbb{R}$ continue et de carré intégrable sur \mathbb{R} .

FIN DU PROBLÈME