

CHAPITRE OR4B : CRÉATION DE LIAISONS SIMPLES C-C : RÉACTIVITÉ DES ÉNOLATES (Cours et exercices)

Les exercices de chimie organique peuvent faire appel à toute notion de PCSI/PC à part Diels-Alder

- I. ACIDITÉ DE L'HYDROGÈNE EN ALPHA DU GROUPE CARBONYLE
 - 1. Principe général
 - 2. Formation et réactivité des énolates
 - 3. Tautomérie céto-énolique (Mécanisme en milieu acide ou basique)
 - 4. Généralisation : acidité en α de groupes attracteurs (pK_A fournis)
- II. RÉACTION D'ALDOLISATION
 - 1. Bilan et conditions opératoires
 - 2. Mécanisme en catalyse basique
 - 3. Aldolisation croisée
 - 4. Crotonisation
 - 5. Application en synthèse

III. ALKYLATION DES ÉNOLATES

- 1. Bilan et mécanisme
- 2. Sélectivité
- 3. Difficultés pratiques

IV. ADDITIONS NUCLÉOPHILES SUR LES α-ÉNONES

- 1. Structure et réactivité des α-énones
- 2. Addition de Michael
- 3. Application à une séquence classique : l'annélation de Robinson
- » Les notions du chapitre de mécanique quantique MQ3 (Prévision de la réactivité en chimie organique) peuvent être utilisées dans les exercices.

RÉVISIONS PCSI : ÉQUILIBRES D'OXYDO-RÉDUCTION, DIAGRAMME E-pH (Exercices)

En particulier des exercices sur les piles.

Révisions	Compétences exigibles		
Chapitre	Chapitre OR4C : Réactivité des énolates		
	Représenter le(s) énol(s) isomère(s) d'une espèce énolisable, et inversement, après avoir identifié un énol, représenter l'aldéhyde ou la cétone dont il est l'isomère.		
	Représenter la base conjuguée d'une espèce énolisable, justifier la stabilité de l'ion énolate et sa réactivité nucléophile ambidente à l'aide du formalisme de la mésomérie ou par l'analyse de ses orbitales frontalières.		
	Proposer ou justifier le choix d'une base permettant de déprotoner une espèce énolisable, les valeurs de pK_A étant fournies.		
	Identifier les produits formés ou inversement prévoir les réactifs mis en jeu lors de réactions faisant intervenir les ions énolates.		
	Choisir dans le cadre d'une stratégie de synthèse les meilleures conditions expérimentales de préparation d'un aldol (d'un cétol) issu d'une aldolisation croisée.		
	Justifier la régiosélectivité de la crotonisation en présence d'une base.		
	Décrire les interactions entre orbitales frontalières des réactifs et interpréter la régiosélectivité de l'alkylation d'un énolate ou de la réaction de Michael.		
	Justifier par la compétition avec l'aldolisation l'impossibilité d'alkyler un aldéhyde.		
	Identifier dans une analyse rétrosynthétique les réactifs permettant d'obtenir un aldol, un cétol, un α -énal, une α -énone ou de réaliser une addition de Michael sur une α -énone.		
Révisions	s PCSI : Equilibres d'oxydo-réduction (Exercices)		
	Connaître les notions d'oxydant, de réducteur, de couple rédox, de demi-pile, de pile, de force électromotrice, de capacité d'une pile.		
	Connaître les couples redox de l'eau, et des exemples d'oxydants et de réducteurs usuels : noms et formules des ions thiosulfate, permanganate, hypochlorite, du dichlore, du peroxyde d'hydrogène, du dioxygène, du dihydrogène, des métaux.		
	Lier la position d'un élément dans le tableau périodique et le caractère oxydant ou réducteur du corps simple correspondant.		
	Prévoir les n.o. extrêmes d'un élément à partir de sa position dans le tableau périodique		
	Connaître les notions de potentiel d'électrode, potentiel standard et savoir appliquer la formule de Nernst.		
	Savoir décrire les électrodes de référence (ESH, ECS).		
	Tracer et exploiter des diagrammes de prédominance ou d'existence d'espèces rédox pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.		
	Savoir définir et reconnaître une réaction de dismutation ou de médiamutation.		
	Ecrire une demi-équation rédox, le bilan d'une réaction d'oxydoréduction et calculer sa constante d'équilibre (formule de K° sans démonstration).		
	Déterminer le sens de fonctionnement d'une pile et calculer sa capacité.		
	Prévoir qualitativement ou quantitativement le caractère thermodynamiquement favorisé ou défavorisé d'une réaction d'oxydo-réduction à partir des potentiels standard des couples.		

	Utiliser des piles pour déterminer des constantes thermodynamiques.	
Révisions PCSI : Diagrammes potentiel-pH (Exercices)		
	Notion de prédominance (d'une espèce en solution), d'existence (d'un solide).	
	Savoir déterminer le nombre d'oxydation d'un élément dans une espèce chimique.	
	Allure du diagramme E-pH de l'eau.	
	Associer les différents domaines d'un diagramme E-pH fourni à des espèces chimiques données.	
	Retrouver la pente d'une frontière oblique.	
	Retrouver la position d'une frontière verticale.	
	Prévoir la stabilité d'un état d'oxydation en fonction du pH du milieu et repérer une dismutation ou une médiamutation.	
	Retrouver une grandeur thermodynamique à partir d'un diagramme (pKa, Ks, E°).	
	Prévoir le caractère thermodynamiquement favorisé ou non d'une transformation par superposition de diagrammes (en particulier discuter de la stabilité d'une espèce dans l'eau désaérée (H^+ ou $H_2O(I)$) ou aérée ($O_2(aq)$)).	
	Confronter les prévisions à des données expérimentales et interpréter d'éventuels écarts en termes cinétiques.	