

RÉVISIONS PCSI : CRISTALLOGRAPHIE (Exercices)

En particulier la notion de coordinence, les sites interstitiels, et les cristaux ioniques.

RÉVISIONS PCSI: ÉQUILIBRES D'OXYDO-RÉDUCTION, DIAGRAMME E-pH (Exercices)

En particulier les piles.

CHAPITRE TC6A: RÉACTIONS D'OXYDO-RÉDUCTION: ÉTUDE THERMODYNAMIQUE (Cours et exercices)

- I. APPROCHE THERMODYNAMIQUE DU FONCTIONNEMENT D'UNE PILE ÉLECTROCHIMIQUE
- II. THERMODYNAMIQUE DES REACTIONS REDOX
- III. COMPLEXATION ET OXYDORÉDUCTION
- » Les notions des chapitres de solutions aqueuses de PCSI peuvent être utilisées dans les exercices.

CHAPITRE TC6B : RÉACTIONS D'OXYDO-RÉDUCTION : ÉTUDE CINÉTIQUE (Cours et exercices, le TD sera fini mercredi mais des exemples ont été traités en cours et un exercice de tracé de courbes i-E & interprétation)

- I. ETUDE CINÉTIQUE DES RÉACTIONS ÉLECTROCHIMIQUES
 - 1. Définition et mécanisme d'une réaction électrochimique
 - 2. Lien entre vitesse et intensité
 - 3. Suivi cinétique des réactions électrochimiques
- II. ALLURE DES COURBES INTENSITÉ-POTENTIEL
 - 1. Enregistrement d'une courbe intensité-potentiel
 - 2. Limitation par le transfert de charge
 - 3. Limitation par le transport de matière
 - 4. Limitation par le solvant
 - 5. Allure générale d'une courbe intensité-potentiel
- III. TRANSFORMATIONS SPONTANÉES
 - 1. Réaction spontanée en solution (notion de potentiel mixte)
 - 2. Réaction spontanée dans une pile
- IV. TRANSFORMATIONS FORCÉES
 - 1. Principe d'une électrolyse
 - 2. Aspect thermodynamique
 - 3. Aspect cinétique
 - 4. Rendement d'une électrolyse
 - 5. Optimisation des conditions d'une électrolyse ou de la charge d'un accumulateur grâce aux courbes i-E

Remarque : Si tout le reste a été vu, tout exercice de chimie organique peut être posé, sauf sur la réaction de Diels-Alder.

Révisions	Compétences exigibles	
Révisions PCSI : Cristallographie (Exercices)		
	Décrire, comprendre, représenter une maille.	
	Déterminer la population, la coordinence, la compacité, la masse volumique pour une structure cfc (seule description à connaître) ou pour une autre structure <u>fournie</u> .	
	Trouver la relation entre le paramètre de maille a et le rayon R d'une sphère.	
	Localiser les sites interstitiels dans une maille cfc et déterminer les rayons d'habitabilité de ces sites.	
	Connaître les forces intervenant dans la cohésion dans les cristaux métalliques, ioniques, covalents, ou moléculaires, et le lien avec les propriétés macroscopiques de ces cristaux.	
	Prévoir la possibilité de réaliser des alliages de substitution ou d'insertion et citer les intérêts de faire des alliages.	
	Vérifier la tangence anion-cation et la non tangence anion-anion dans une structure ionique cubique fournie.	
Chapitre TC6A : Réactions d'oxydo-réduction : Etude thermodynamique (Cours et exercices)		
	Connaître la relation entre l'enthalpie libre standard d'une demi-équation d'oxydo-réduction et le potentiel standard du couple correspondant ainsi que la relation entre l'enthalpie libre d'une réaction rédox et les potentiels de Nernst des couples mis en jeu.	
	Déterminer l'enthalpie libre standard et la constante d'équilibre d'une réaction d'oxydo- réduction à partir des potentiels standard des couples mis en jeu.	
	Déterminer la valeur du potentiel standard d'un couple d'oxydoréduction à partir de données thermodynamiques (constantes d'équilibre, potentiels standard).	
	Décrire et justifier le fonctionnement d'une pile électrochimique ou le sens d'évolution d'une réaction d'oxydoréduction en solution à l'aide des potentiels ou de l'enthalpie libre de réaction.	
	Interpréter l'évolution du caractère oxydant ou réducteur d'une entité par complexation.	
Chapitre TC6B : Réactions d'oxydo-réduction : Etude cinétique (Cours et exercices)		
	Relier vitesse surfacique d'une réaction électrochimique et intensité du courant.	
	Connaître le montage expérimental permettant de tracer une courbe i-E.	
	Définir les notions de systèmes rapides et lents, surpotentiel, courant limite de diffusion, domaine d'inertie électrochimique du solvant et les utiliser pour interpréter des courbes intensité-potentiel.	
	Tracer l'allure de courbes i-E à partir de données de potentiels standard, concentrations et surpotentiels et interpréter des courbes i-E données.	
	Identifier une transformation spontanée et positionner un potentiel mixte sur un tracé de courbes i-E.	
	Utiliser les courbes courant-potentiel pour rendre compte du fonctionnement d'une pile électrochimique et prévoir la valeur de la tension minimale à imposer.	
	Utiliser les courbes courant-potentiel pour rendre compte du fonctionnement d'un dispositif siège d'une électrolyse et prévoir la valeur de la tension de seuil.	

	Utiliser les courbes courant-potentiel pour justifier la nécessité de purifier une solution électrolytique avant l'électrolyse et pour choisir les électrodes permettant de réaliser l'électrolyse voulue.	
	Déterminer un rendement faradique et évaluer la masse de produit formé pour une durée et des conditions données d'électrolyse.	
	Identifier les paramètres d'influence du domaine d'inertie électrochimique du solvant et les paramètres influençant la résistance interne du dispositif électrochimique.	
	Identifier piles, accumulateurs et électrolyseurs comme des dispositifs mettant en jeu des conversions entre énergie chimique et énergie électrique.	
Révisions PCSI : Equilibres d'oxydo-réduction (Exercices)		
	Connaître les notions d'oxydant, de réducteur, de couple rédox, de demi-pile, de pile, de force électromotrice, de capacité d'une pile.	
	Connaître les couples redox de l'eau, et des exemples d'oxydants et de réducteurs usuels : noms et formules des ions thiosulfate, permanganate, hypochlorite, du dichlore, du peroxyde d'hydrogène, du dioxygène, du dihydrogène, des métaux.	
	Lier la position d'un élément dans le tableau périodique et le caractère oxydant ou réducteur du corps simple correspondant.	
	Prévoir les n.o. extrêmes d'un élément à partir de sa position dans le tableau périodique	
	Connaître les notions de potentiel d'électrode, potentiel standard et savoir appliquer la formule de Nernst.	
	Savoir décrire les électrodes de référence (ESH, ECS).	
	Tracer et exploiter des diagrammes de prédominance ou d'existence d'espèces rédox pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.	
	Savoir définir et reconnaître une réaction de dismutation ou de médiamutation.	
	Ecrire une demi-équation rédox, le bilan d'une réaction d'oxydoréduction et calculer sa constante d'équilibre (formule de K° sans démonstration).	
	Déterminer le sens de fonctionnement d'une pile et calculer sa capacité.	
	Prévoir qualitativement ou quantitativement le caractère thermodynamiquement favorisé ou défavorisé d'une réaction d'oxydo-réduction à partir des potentiels standard des couples.	
	Utiliser des piles pour déterminer des constantes thermodynamiques.	
Révision	s PCSI : Diagrammes potentiel-pH (Exercices)	
	Notion de prédominance (d'une espèce en solution), d'existence (d'un solide).	
	Savoir déterminer le nombre d'oxydation d'un élément dans une espèce chimique.	
	Allure du diagramme E-pH de l'eau.	
	Associer les différents domaines d'un diagramme E-pH fourni à des espèces chimiques données.	
	Retrouver la pente d'une frontière oblique.	
	Retrouver la position d'une frontière verticale.	
	Prévoir la stabilité d'un état d'oxydation en fonction du pH du milieu et repérer une dismutation ou une médiamutation.	
	Retrouver une grandeur thermodynamique à partir d'un diagramme (pKa, Ks, E°).	

Prévoir le caractère thermodynamiquement favorisé ou non d'une transformation par superposition de diagrammes (en particulier discuter de la stabilité d'une espèce dans l'eau désaérée (H⁺ ou H₂O(I)) ou aérée (O₂(aq))).

Confronter les prévisions à des données expérimentales et interpréter d'éventuels écarts en termes cinétiques.