Travaux Dirigés de T_3

Conseils pour ce TD:

- Le cours doit être connu, les applications directes qui y figurent refaites.
- Il ne faut surtout pas appliquer des formules à tord et à travers, posez-vous systématiquement les questions suivantes :
 - * Sur quel système suis-je en train de travailler (phase condensée, gaz parfait ...)?
 - * Quel est le type de transformation qu'il subit?
- Même si cela n'est pas demandé explicitement par l'énoncé, dans le cas d'une transformation d'un gaz parfait, tracer systématiquement l'allure du graphe p(V) (diagramme de Watt).
- Dans le cas d'une suite de transformations, il peut être souvent utile de résumer les données de l'énoncé dans un tableau.
- On donne les variations d'entropie molaire suivantes :
 - pour un GP si la température est constante : $s(T,p_f)-s(T,p_i)=-R\ln\left(\frac{p_f}{p_i}\right)$
 - pour un GP si la pression est constante : $s(T_f,p) s(T_i,p) = C_{p,m} \ln \left(\frac{T_f}{T_i} \right)$
 - pour une phase condensée : $s(T_f) s(T_i) = C_m \ln \left(\frac{T_f}{T_i} \right)$

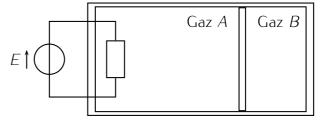
Exercice 1 : Transformations couplées, suite

Un récipient à parois rigides et calorifugées contient deux gaz parfaits diatomiques séparés par une paroi adiabatique qui peut se déplacer sans frottement (fig. ci-dessous) et un conducteur ohmique de résistance $R=10~\Omega$ et de capacité thermique négligeable parcourue par un courant d'intensité $I=1~\mathrm{A}$ pendant une durée τ .

Initialement, $V_A = V_B = 1$ L, $p_A = 1$ bar et $T_A = T_B = 300$ K.

Après le temps τ , $V_A'=1,1$ L.

- 1. Calculer p'_B , p'_A , T'_B et T'_A .
- 2. Calculer τ .
- 3. Calculer W_B , le travail reçu par le gaz B.
- 4. Calculer ΔS_B la variation d'entropie du gaz B puis ΔS_A celle de A.



Exercice 2: Compressions d'un GP: la suite

Un gaz parfait est enfermé dans un cylindre de volume $V_1 = 5$ L à l'intérieur duquel peut coulisser (sans frottement) un piston de masse négligeable.

À l'extérieur du piston, la température est $T_{\rm ext}=293$ K, la pression est $P_{\rm ext}=1$ atm.

La paroi du cylindre étant parfaitement diatherme (diathermane), à l'équilibre la température du gaz est toujours $T_{\rm ext}=293~{\rm K}.$

Au départ, la pression du gaz est $p = P_1 = P_{\text{ext}}$.

1. En appuyant sur le piston, on augmente très lentement la pression jusqu'à $P_2 = 10$ atm. Calculer le travail W_1 fourni au gaz. Que vaut l'entropie créée lors de cette transformation?

2. On passe maintenant instantanément de P_1 à P_2 puis on attend l'équilibre qui interviendra forcément après quelques oscillations du piston si on considère la viscosité du gaz. Que vaut le travail W_2 fourni au gaz? Que vaut l'entropie créée $S_{c,2}$ lors de cette transformation? Montrer que le produit $T_AS_{c,2}$ est égal au travail supplémentaire qu'il a fallu fournir par rapport à la première compression ($T_AS_{c,2} = W_2 - W_1$). Quel phénomène physique est à l'origine de la dégradation de l'énergie fournie?

On rappelle : 1 atm = $1,013.10^5$ Pa.

Exercice 3 : Création d'entropie

On jette un morceau de fer de 2 kg chauffé à blanc (880 K) dans un lac à 5°C. La capacité calorifique du fer est de 460 J.kg⁻¹.K⁻¹ et on supposera qu'elle ne dépend pas de la température. Calculez l'entropie créée lors de la mise à l'équilibre du morceau de fer.

Exercice 4 : ΔS au cours de N transformations réversibles.

Soit une mole de gaz parfait monoatomique de la pression p=1 bar et à température la $T_0=450$ K (état 0). On comprime ce gaz de la pression p à p'=10 bars de façon réversible et isotherme, puis, on détend le gaz de façon réversible et adiabatique de p' à p (état 1).

- 1. Représenter la suite des transformations dans un diagramme de Watt (p, V).
- 2. Calculer la variation d'entropie ΔS_1 du gaz ainsi que la température finale T_1 .
- 3. On recommence la même opération depuis l'état 1 $(p,T_1) \rightarrow$ état 2 $(p,T_2) \rightarrow$... \rightarrow état N (p,T_N) . Compléter le diagramme de Watt et déterminer la variation d'entropie du gaz après les N opérations ainsi que la température finale T_N et enfin la variation d'énergie interne ΔU_N . Faire les applications numériques pour N=5.
- 4. Voyez-vous une application? Discuter l'hypothèse du gaz parfait si N grand.

Exercice 5 : Effet Joule

On considère un conducteur ohmique de résistance R=1,0 k Ω , de capacité thermique C, parcouru par un courant d'intensité constante I=1,0 A, qui permet de maintenir constante la température d'un volume d'eau (baignoire, piscine, bain thermostaté en chimie). La température de l'eau constante est égale à $T_0=50^\circ$ C.

La température extérieure est $T_{\rm ext}=20^{\circ}C$ et la pression extérieure constante $P_{\rm ext}=1,0$ bar. On note Δt la durée d'utilisation. On considère le système constitué de l'eau liquide, du réservoir (de capacité thermique négligée) et de la résistance, modélisés par des phases condensées idéales.

- Exprimer le travail électrique reçu par le système.
- Exprimer le transfert thermique reçu par le système. Interpréter le signe.
- En déduire l'entropie échangée par le système.
- Exprimer l'entropie créée pendant une durée de fonctionnement Δt , en fonction de R, I, Δt et $T_{\rm ext}$
- Quelles sont les causes d'irréversibilité qui donnent lieu à cette entropie créée?
- Montrer que $T_{ext}S_{créée}$ est égal au travail électrique dégradé (donc au travail électrique consommé et dissipé sous forme de chaleur).

Exercice 6 : Entropie et frottements

Deux solides S_1 et S_2 , considérés comme des phases condensées idéales de capacités thermiques C_1 et C_2 sont en contact.

 S_1 est immobile. Lorsqu'un opérateur exerce sur S_2 une force $\vec{F}_{op} = F_{op}\vec{e}_x$, S_2 peut glisser sur S_1 selon un mouvement de translation parallèle à l'axe horizontal (Ox) et S_1 exerce sur S_2 une force de frottement $\vec{F}_{frot} = F_{frot}\vec{e}_x$.

On admet pour la force de frottement le modèle classique des forces de frottement solide/solide :

- Si S_2 est en mouvement, $ec{F}_{frot}$ est opposée au mouvement et de norme constante égale à ϕ .
- Si le système est immobile, \vec{F}_{frot} est comprise entre $-\phi$ et $+\phi$.
- 1. Les variables d'état x et F_{frot} sont-elles reliées par une équation d'état de type $f(F_{frot}, x, T) = 0$?
- 2. On néglige les échanges thermiques entre le système constitué par les deux solides et l'extérieur. Le système est initialement à l'équilibre thermique à la température T_A , puis S_2 est tiré (toujours dans le même sens) sur une distance l et on attend que l'équilibre thermique se rétablisse à une température T_B . Déterminer l'entropie créée au cours de la transformation.