TD n° 30.

Fonctions de deux variables réelles.

Exercice 1 Déterminez les fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ telles que pour tous $x, y, z, t \in \mathbb{R}$,

- 1. f(x,y) + f(y,z) + f(z,x) = 0.
- 2. f(x, y + z) = f(x + y, z)
- 3. f(x,y) + f(z,t) = f(x,z) + f(y,t).

Exercice 2 Étudiez la continuité sur \mathbb{R}^2 des fonctions suivantes.

1.
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$
2. $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$

3.
$$f(x,y) = \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1, \\ -\frac{1}{2}x^2 & \text{sinon.} \end{cases}$$

2.
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Exercice 3 Soit f la fonction définie sur \mathbb{R}^2 privé de la droite d'équation y=x par

$$\forall (x,y) \in \mathbb{R}^2, \ x \neq y, \ f(x,y) = \frac{\sin x - \sin y}{x - y}.$$

Peut-on prolonger f par continuité à \mathbb{R}^2 ?

Exercice 4 Étudiez l'existence de dérivées partielles pour les fonctions suivantes :

1.
$$(x,y) \longmapsto \sup(|x|,|y|)$$
;

$$2. (x,y) \longmapsto |x| + |y|;$$

3.
$$(x,y) \longmapsto \begin{cases} \frac{\sin x^2 + \sin y^2}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq 0\\ 0 & \text{sinon.} \end{cases}$$

Exercice 5 Soit f une application de classe C^1 sur \mathbb{R}^2 . Calculez les dérivées partielles des fonctions suivantes :

1. q(x,y) = f(y,x);

3. g(x,y) = f(y, f(x,x));

2. q(x) = f(x, x):

4. q(x) = f(x, f(x, x)).

Exercice 6 Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq 0\\ 0 & \text{sinon.} \end{cases}$$

Montrez que f admet en (0,0) une dérivée suivant tout vecteur mais qu'elle n'est pas continue en (0,0).

Exercice 7 Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{|x| + |y|} & \text{si } (x,y) \neq 0\\ 0 & \text{sinon.} \end{cases}$$

Cette fonction est-elle continue? Est-elle de classe C^1 ?

Exercice 8 Soit h une fonction continue sur \mathbb{R} . Déterminez dans chacun des cas suivants l'ensemble des fonctions f de classe C^1 (ou C^2) sur \mathbb{R}^2 telles que pour tout $(x,y) \in \mathbb{R}^2$, on ait :

1.
$$\frac{\partial f}{\partial x}(x,y) = 0$$
;

2.
$$\frac{\partial f}{\partial x}(x,y) = h(x)$$
;

3.
$$\frac{\partial f}{\partial x}(x,y) = h(y)$$
;

Exercice 9 Déterminez toutes les applications $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad 2\frac{\partial f}{\partial x}(x,y) + 3\frac{\partial f}{\partial y}(x,y) = xy,$$

en posant u = x et v = 3x - 2y.

Exercice 10 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^2 et $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par

$$g(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } x \neq y \\ f'(x) & \text{si } x = y. \end{cases}$$

Montrez que q est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Exercice 11 Étudiez la continuité de $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, l'existence et la continuité des dérivées partielles premières de f:

1.
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

2.
$$f(x,y) = \begin{cases} \frac{x \sin(y) - y \sin(x)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

3.
$$f(x,y) = \begin{cases} x^2 & \text{si } |x| > y \\ y^2 & \text{sinon.} \end{cases}$$

Exercice 12 Étudiez les extremums des fonctions suivantes :

1.
$$f(x,y) = x^3 + y^3 \text{ sur } \mathbb{R}^2$$
;

1.
$$f(x,y) = x^3 + y^3 \text{ sur } \mathbb{R}^2$$
;
2. $f(x,y) = x^2 + y^2 + \sin(x^2 + y^2) \text{ sur } [-1,1]^2$;
3. $f(x,y) = x^2 + 3y^2 - 2x - 10y + 2xy + 6 \text{ sur } \mathbb{R}^2$;
4. $f(x,y) = e^{x \cos y} \text{ sur } \mathbb{R}^2$.

2.
$$f(x,y) = x^2 + y^2 + \sin(x^2 + y^2) \sin[-1, 1]^2$$
;

4.
$$f(x,y) = e^{x \cos y} \operatorname{sur} \mathbb{R}^2$$

Exercice 13 Montrez que la fonction $f:(x,y) \longmapsto xe^y + ye^x$ admet un unique point critique, mais aucun extremum sur \mathbb{R}^2 .

2

Exercice 14 Déterminez max $\{xyz \mid x \ge 0, y \ge 0, z \ge 0, x+y+z=1\}$.