De l'azote assimilé à un gaz parfait diatomique ($M = 28 \text{ g.mol}^{-1}$; $\gamma = 1,4$) s'écoule en régime permanent dans une turbine avec un débit massique $D_m = 4 \text{ kg.s}^{-1}$. On néglige les différences d'altitude.

Les conditions d'écoulement sont : - à l'entrée : pression $P_1 = 4$ bar et vitesse $c_1 = 20$ m.s⁻¹ - à la sortie : pression $P_2 = 2$ bar et vitesse $c_2 = 180$ m.s⁻¹

La turbine *fournit à l'extérieur* une puissance mécanique P = 80 kW, le gaz sort à une température T_2 égale à la température extérieure $T_2 = 298$ K.

Données : variation d'entropie massiques d'un gaz parfait entre un état initial i et un état final f :

$$\Delta s_{\text{gaz parfait}} = \frac{\gamma R}{M(\gamma - 1)} Ln(\frac{T_f}{T_i}) - \frac{R}{M} Ln(\frac{P_f}{P_i})$$

- a-Démontrer le premier principe « industriel » : $\Delta h + \Delta e_c + \Delta e_p = w_u + q$
- b-Exprimer la variation d'enthalpie massique Δh pour un gaz parfait. Exprimer c_P en fonction de γ et M.
- c-Dans l'hypothèse où la transformation subie par l'azote est isotherme, quelle est la puissance thermique P_{th} reçue par le gaz ? Calculer la variation d'entropie massique du gaz et l'entropie créée par seconde.
- d-Dans le cas d'une transformation adiabatique, calculer la température à l'entrée de la turbine. Calculer l'entropie créée par seconde.
- a- Voir cours

b-
$$\Delta h = c_p \Delta T$$
 avec : $c_p = \frac{\gamma R}{M(\gamma - 1)}$

c- • Evolution isotherme à la température $T_1 = T_2 = T_a \implies \Delta h = c_p(T_2 - T_1) = 0$ Le premier principe industriel devient : $\Delta e_c = w_u + q$ avec $w_u < 0$ car le fluide fournit du travail à l'extérieur. q est en J.kg⁻¹, donc $P_{th} = D_m q$ et de même $P = -D_m w_u$

D'où :
$$P_{th} = P + \frac{1}{2} D_m (c_2^2 - c_1^2)$$
 A.N : $P_{th} = 144 \text{ kW}$

- Variation d'entropie massique : $\Delta s = -\frac{R}{M} Ln(\frac{P_2}{P_1})$
- Entropie créée par seconde : $\sigma = D_m s_c = D_m (\Delta s \frac{q}{T_a}) = D_m \Delta s \frac{P_{th}}{T_a}$

D'où:
$$\sigma = -D_m \frac{R}{M} Ln(\frac{P_2}{P_1}) - \frac{P_{th}}{T_a}$$
 A.N: $\sigma = 340 \text{ J.K}^{-1}.s^{-1}$

d- • Evolution adiabatique : q = 0 Le premier principe industriel devient : $\Delta h + \Delta e_c = w_u$

Soit:
$$c_p(T_2 - T_1) + \frac{1}{2}(c_2^2 - c_1^2) = -\frac{P}{D_m}$$
 avec: $c_p = \frac{\gamma R}{M(\gamma - 1)}$
D'où: $T_1 = T_2 + \frac{1}{2c_p}(c_2^2 - c_1^2) + \frac{P}{D_m c_p}$ A.N: $\underline{T_1} = 333 \text{ K}$

• $\sigma = D_m s_c = D_m \Delta s$ car q = 0

On
$$a: \Delta s = c_p Ln(\frac{T_2}{T_1}) - \frac{R}{M} Ln(\frac{P_2}{P_1})$$
 D'où $: \sigma = D_m \left[c_p Ln(\frac{T_2}{T_1}) - \frac{R}{M} Ln(\frac{P_2}{P_1})\right]$ $A.N: : \underline{\sigma} = 362 \text{ J.K}^{-1}.s^{-1}$