DL n° 5.

Séries entières et intégration

On pose
$$f(x) = \int_0^1 \frac{\arctan(xt)}{t^2 + 1} dt$$
.

Partie 1: Étude de la fonction f

- 1. Déterminez l'ensemble de définition de f et étudiez sa parité.
- 2. Donnez f(0) et f(1).
- 3. Montrez que f est strictement croissante.
- 4. Montrez que l'arctangente est 1-lipschitzienne sur \mathbb{R} . En déduire que f est uniformément continue.
- 5. Dans cette question, on cherche la limite de f en $+\infty$.
 - (a) Soient $x, \varepsilon \in \mathbb{R}_+^*$ avec $\varepsilon < 1$.
 - i. Montrez que $\left| \int_0^{\varepsilon} \frac{1}{t^2 + 1} \left(\frac{\pi}{2} \arctan(xt) \right) dt \right| \leqslant \frac{\pi}{2} \varepsilon$.
 - ii. Montrez que $\left| \int_{\varepsilon}^{1} \frac{1}{t^2 + 1} \left(\frac{\pi}{2} \arctan(xt) \right) dt \right| \leqslant \frac{|\ln(\varepsilon)|}{x}$.
 - (b) En déduire $\lim_{x \to +\infty} f(x)$.
- 6. Montrez que pour $a, b \in \mathbb{R}$, $\left| \arctan(b) \arctan(a) \frac{b-a}{1+a^2} \right| \leqslant \frac{(b-a)^2}{2}$.
- 7. En déduire que f est dérivable sur \mathbb{R} et que $f'(x) = \int_0^1 \frac{t}{(t^2+1)(x^2t^2+1)} dt$.
- 8. Calculez f'(x).
- 9. Montrez que f est de classe C^1 sur \mathbb{R} .

Partie 2 : Développement en série entière de f

- 1. Montrez que : $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \operatorname{arctan}(x) = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} + (-1)^{n+1} \int_0^x \frac{u^{2n+2}}{u^2+1} du.$
- 2. En déduire que la série $\sum_{k\geqslant 0} \frac{(-1)^k}{2k+1}$ converge, et déterminez sa somme.
- 3. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $F_n(x) = \int_0^x \frac{u^{2n+2}}{u^2+1} du$, et $I_n = \int_0^1 \frac{t^{2n+1}}{t^2+1} dt$.

Montrez que
$$f(x) = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} I_k x^{2k+1} + (-1)^{n+1} \int_0^1 \frac{F_n(xt)}{t^2+1} dt.$$

- 4. Montrez que : $\forall x \in [-1, 1], \sum_{k \ge 0} \frac{(-1)^k}{2k+1} I_k x^{2k+1}$ converge et déterminez sa somme.
- 5. Soit pour $n \in \mathbb{N}^*$, $u_n = \ln(2) + \sum_{k=1}^n \frac{(-1)^k}{k}$.
 - (a) Montrez que pour $n \in \mathbb{N}^*$, $I_n = \frac{(-1)^n u_n}{2}$.
 - (b) Montrez que la série $\sum_{n\geqslant 1} \frac{u_n}{2n+1}$ converge et déterminez sa somme.
- 6. Montrez que $\sum_{n\geqslant 1}\frac{(-1)^{n+1}}{n}$ converge et déterminez sa somme.