DEVOIR MAISON 1 - Sur les polynômes À rendre le lundi 15 septembre

I. Polynômes réciproques (Sujet Mines)

Soit $p \in \mathbb{N}^*$. Un polynôme $P \in \mathbb{C}[X]$ de degré p est dit réciproque lorsqu'il satisfait l'égalité

$$P(X) = X^p P\left(\frac{1}{X}\right).$$

1. Soit $P \in \mathbb{C}[X]$ de degré p. On écrit $P = \sum_{k=0}^{p} a_k X^k$, où a_0, \dots, a_p sont des nombres complexes, et $a_p \neq 0$.

Montrer que P est réciproque si et seulement si pour tout entier k, $0 \le k \le p$, on a l'égalité $a_k = a_{p-k}$.

- 2. Soit P un polynôme de degré p écrit sous forme factorisée $P = a_p \prod_{i=1}^d (X \lambda_i)^{m_i}$, où $\lambda_1, \ldots, \lambda_d$ sont les racines complexes distinctes de P et m_1, \ldots, m_d leurs multiplicités. Écrire sous forme factorisée le polynôme $X^p P\left(\frac{1}{X}\right)$ et démontrer que si P est réciproque alors pour tout entier $i, 1 \le i \le d$, λ_i est non nul et $\frac{1}{\lambda_i}$ est racine de P avec la multiplicité m_i .
- 3. Soit Q un polynôme de degré p. On dit que Q est antiréciproque si

$$Q(X) = -X^p Q\left(\frac{1}{X}\right).$$

Montrer que si Q est antiréciproque, 1 est une racine de Q et qu'il existe un polynôme P constant ou réciproque tel que Q = (X - 1)P.

Soit R un polynôme non constant de $\mathbb{C}[X]$ ayant la propriété suivante :

Toute racine a de R est non nulle et $\frac{1}{a}$ est racine de R de même multiplicité que a.

- 4. Démontrer que le produit des racines de R, comptées avec multiplicités, ne peut prendre que les valeurs 1 ou -1. On pourra remarque que l'égalité $a = \frac{1}{a}$ n'a lieu que pour a = 1 ou -1.
- 5. En déduire que R est réciproque ou antiréciproque.

II. ÉTUDE DE DEUX FAMILLES DE POLYNÔMES (SUJET CENTRALE)

Notations

Si k_1 et k_2 sont deux entiers tels que $k_1 \leq k_2$, on note $[\![k_1, k_2]\!]$ l'ensemble des entiers k tels que $k_1 \leq k \leq k_2$.

Pour tout réel x, on note |x| la partie entière de x.

Pour $n \in \mathbb{N}$, on note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à cœfficients dans \mathbb{R} de degré inférieur ou égal à n.

I.A - Polynômes de Lagrange

Soit $n \in \mathbb{N}^*$ et (a_1, \ldots, a_n) une famille de n réels deux à deux distincts. Pour tout i dans [1, n], on note L_i le polynôme défini par

$$L_i(X) = \prod_{\substack{j=1\\j \neq i}}^n \frac{X - a_j}{a_i - a_j}.$$
 (1)

On dit que L_1, \ldots, L_n sont les polynômes de Lagrange associés à a_1, \ldots, a_n .

On définit l'application

$$\langle \cdot, \cdot \rangle : \left| \begin{array}{ccc} \mathbb{R}_{n-1}[X] \times \mathbb{R}_{n-1}[X] & \longrightarrow & \mathbb{R} \\ (P, Q) & \longmapsto & \sum_{k=1}^{n} P(a_k)Q(a_k). \end{array} \right|$$

- 1. Soit $i \in [1, n]$. Donner le degré du polynôme L_i et son cœfficient dominant.
- 2. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}_{n-1}[X]$.
- 3. Montrer que, pour tout i et k dans [1, n],

$$L_i(a_k) = \begin{cases} 1 & \text{si } k = i \\ 0 & \text{sinon.} \end{cases}$$

4. Montrer que, pour tout $i \in [1, n]$ et tout $P \in \mathbb{R}_{n-1}[X]$,

$$\langle L_i, P \rangle = P(a_i).$$

- 5. Montrer que la famille (L_1, \ldots, L_n) est une base orthonormée de $\mathbb{R}_{n-1}[X]$ muni du produit scalaire $\langle \cdot, \cdot \rangle$.
- 6. En déduire que, pour tout $P \in \mathbb{R}_{n-1}[X]$,

$$P = \sum_{i=1}^{n} P(a_i) L_i.$$

7. Montrer que, pour tout polynôme P de degré inférieur ou égal à n-2,

$$\sum_{i=1}^{n} \frac{P(a_i)}{\prod_{\substack{j=1\\j\neq i}}^{n} (a_i - a_j)} = 0.$$

I.B - Polynômes de Tchebychev

Soit $n \in \mathbb{N}^*$. On pose

$$T_n(X) = \sum_{p=0}^{\lfloor n/2 \rfloor} (-1)^p \binom{n}{2p} X^{n-2p} (1-X^2)^p.$$

8. En développant $(1+x)^n$ pour deux réels x bien choisis, montrer que

$$\sum_{p=0}^{\lfloor n/2\rfloor} \binom{n}{2p} = 2^{n-1}.$$

- 9. Montrer que T_n est un polynôme de degré n. Expliciter le coefficient dominant de T_n .
- 10. Montrer que T_n est l'unique polynôme à coefficients réels vérifiant la relation

$$\forall \theta \in \mathbb{R}, \qquad T_n(\cos(\theta)) = \cos(n\theta).$$

11. Pour $k \in [1, n]$, on pose $y_{k,n} = \cos\left(\frac{(2k-1)\pi}{2n}\right)$. Montrer que

$$T_n(X) = 2^{n-1} \prod_{k=1}^n (X - y_{k,n}).$$

I.C - Soit $n \in \mathbb{N}^*$ et W un polynôme unitaire de degré n. L'objectif de cette sous-partie est de montrer que

$$\sup_{x \in [-1,1]} |W(x)| \ge \frac{1}{2^{n-1}} \tag{2}$$

puis d'étudier dans quel cas il y a égalité.

12. Montrer que $\sup_{x \in [-1,1]} |T_n(x)| = 1$. En déduire un polynôme unitaire de degré n réalisant le cas d'égalité dans (2).

On pose
$$Q = \frac{1}{2^{n-1}}T_n - W$$
 et, pour tout $k \in [0, n]$, $z_k = \cos\left(\frac{k\pi}{n}\right)$.

- 13. Montrer que Q est un polynôme de degré inférieur ou égal à n-1.
- 14. Dans cette question, on montre (2) par l'absurde.
 - Si on suppose que $\sup_{x \in [-1,1]} |W(x)| < \frac{1}{2^{n-1}}$, montrer que, pour tout $k \in [0, n-1], Q(z_k)Q(z_{k+1}) < 0$.
 - En déduire une contradiction et conclure.

On suppose maintenant que $\sup_{x \in [-1,1]} |W(x)| = \frac{1}{2^{n-1}}$.

15. Montrer que, pour tout $k \in [0, n]$,

$$\frac{Q(z_k)}{\prod_{\substack{j=0\\j\neq k}}^n (z_k - z_j)} \geqslant 0.$$

16. En déduire que Q=0, puis que $W=\frac{1}{2^{n-1}}T_n$.

On pourra considérer la somme des inégalités de la question précédente et exploiter la question 7 appliquée à des données convenables.

3